Applied Geochemistry (v.66, #C)

Lipid, sterol and saccharide sources and dynamics in surface soils during an annual cycle in a temperate climate region by Ahmed I. Rushdi; Daniel R. Oros; Khalid F. Al-Mutlaq; Ding He; Patricia M. Medeiros; Bernd R.T. Simoneit (1-13).
Multi-biomarkers were characterized in surface soils with different vegetation during an annual cycle in Oregon, U.S.A., to study the composition and dynamics of soil organic matter (SOM). The major compound classes identified include saccharides, steroids, terpenoids, and homologous series of aliphatic lipids (n-alkanoic acids, n-alkanols, and n-alkanes). Saccharides, n-alkanoic acids, and sterols were the most dominant compound groups identified in Ryegrass field soils, whereas n-alkanoic acids, n-alkanols, and sterols were dominant in soils under conifer and deciduous vegetation. Plant species, instead of microbial organisms, was found to be the primary source influencing the concentration and distribution of the major biomarker tracers in the studied surface soils. Over an annual cycle, concentrations of higher plant lipids such as monoacyl glycerides, sterols, n-alkanoic acids and total wax were higher during summer (especially June–August). During fall into winter, the concentrations of all compounds decreased to steady state levels due to cessation of de novo synthesis and concomitant biodegradation and remineralization of detritus. Sucrose and glucose reached maximum concentrations during spring (especially March–May), which could be related with plant growth, especially rootlets in the soils. Mycose, the microbial/fungal metabolite, maximized during late summer, suggesting the concomitant increase of microbial/fungal activity with the increasing primary production. The composition and variation of biomarkers observed over an annual cycle improved our understanding of SOM dynamics in temperate soils, which could also be linked to regional and global carbon cycles.
Keywords: Soils; Production and dormancy seasons; Lipids; Saccharides; Sterols;

Icelandic high temperature geothermal systems are considered to number thirty three, thereof three are submarine and seven subglacial. All are briefly described but the chemistry of fluids from twenty four of them is considered. The fluid in the three submarine areas and those four on land that are closest to the sea are relatively saline but to a differing extent mixed with groundwater. The rest contain dilute fluids. The fluids of the central highland systems are mostly locally derived but may in some instances be quite old whereas those in the northerly Krafla area which is inland and the Öxarfjörður area which is close to the sea appear to be a mixture of local and central highland water, but those in the inland Hengill, Geysir, Námafjall and Theistareykir areas appear to have travelled relatively long distances from the central highlands. The gas observed is magmatic except in the northerly Öxarfjördur area close to the sea where it is apparently derived from organic sediments.
Keywords: Geothermal; Geochemistry; Magmatic; Iceland; High-temperature; Isotopes;

Thermodynamic modeling of binary CH4–CO2 fluid inclusions by Shide Mao; Lanlan Shi; Qiongbin Peng; Mengxin Lü (65-72).
An equation of state (EOS) explicit in Helmholtz free energy has been improved to calculate the PVTx and vapor–liquid phase equilibrium properties of CH4–CO2 fluid mixture. This EOS, where four mixing parameters are used, is based on highly accurate EOSs recommended by NIST for pure components (CH4 and CO2) and contains a simple generalized departure function presented by Lemmon and Jacobsen (1999). Comparison with experimental data available indicates that the EOS can calculate both vapor–liquid phase equilibrium and volumetric properties of this binary fluid system with accuracy close to that of experimental data up to high temperature and pressure within full range of composition. The EOS of CH4–CO2 fluid, together with the updated Gibbs free energy model of solid CO2 (dry ice), is applied to calculate the CH4 content (x CH4) and molar volume (V m) of the CH4–CO2 fluid inclusion based on the assumption that the volume of an inclusion keeps constant during heating and cooling. V m − x CH 4 diagrams are presented, which describe phase transitions involving vapor, liquid and CO2 solid phases of CH4–CO2 fluid inclusions. Isochores of CH4–CO2 inclusions at given x CH 4 and V m can be easily calculated from the improved EOS.
Keywords: CH4-CO2; Equation of state; PVTx; Phase equilibria; Fluid inclusion;

Water-rock-tailings interactions and sources of sulfur and metals in the subtropical mining region of Taxco, Guerrero (southern Mexico): A multi-isotopic approach by Oscar Talavera Mendoza; Joaquin Ruiz; Elvia Díaz Villaseñor; Alejandro Ramírez Guzmán; Alejandra Cortés; Sergio Adrián Salgado Souto; Azucena Dótor Almazán; Reymundo Rivera Bustos (73-81).
Multi-isotope (H, O, S, Sr, Pb) systems coupled with conventional (major and trace element) hydrogeochemical analysis were applied to determine the origin of water, to model water-rock-tailings interactions and for source apportionment of sulfur and associated toxic metals in the mining region of Taxco, Guerrero in southern Mexico. Oxygen and H isotopes indicate that meteoric water in the zone is rainwater undergoing varying degrees of isotopic fractionation by atmospheric evaporation whereas Sr isotopes trace the interaction of pristine water from volcanics of the regional recharge zone and subsequently flowing through sandstone and shale to spring points. Leachates form from two distinctive sources (spring water and surface water) having differential interactions with bedrocks prior to entering the tailings. Compared to pristine water, leachates are enriched in sulfate, metals (e.g. Fe, Mn, Pb and Zn) and metalloids (e.g. As). The sulfur isotopic composition of ore-sulfides, leachates, secondary precipitates, regional surface water and hypogenic sulfates is described in terms of a two-component mixing model with shale of Mexcala and limestone of Morelos formations representing the light and heavy end-members, respectively, whereas Sr isotopic composition is bracketed combining three lithogenic (Mexcala/Morelos, Tilzapotla and Taxco Schist) sources. Finally, leachates have a mixture of lead from ore-sulfides and Taxco Schist Formation (Family I) or from ore-sulfides alone (Family II). The application of multiple environmental isotopic techniques is an outstanding tool for elucidating complex interactions of water with bedrocks and tailings and for determining the source of sulfur and toxic metal from mining and other metal polluted environments.Display Omitted
Keywords: Sulfide tailings; Hydrogeochemistry; H, O, S, Sr and Pb isotopes; Isotopic fractionation; Water and leachate origin;

The Carboniferous Bowland Shale in England, and its correlatives in Ireland, contain anomalously high concentrations of trace elements, including selenium (Se), molybdenum (Mo) and arsenic (As). High levels of these elements reflect high sulphur contents as these elements occur as trace constituents of pyrite. Anomalous Se in particular may have a volcanic provenance, from contemporary volcanic activity and/or drainage from Ordovician volcanogenic sulphide deposits. Following concern over the release of Se and As into groundwater during shale gas extraction in the US, the potential fate of Se and As during any future shale gas extraction from the Bowland Shale merits attention. It is at least an environmental issue that must be managed, but at best it could be an opportunity for extraction of Se in an environmentally sensitive manner.
Keywords: Selenium; Molybdenum; Arsenic; Bowland Shale; Carboniferous; Shale gas;

Thermodynamic modeling of native formation of Au–Ag–Cu–Hg solid solutions by Konstantin V. Chudnenko; Galina A. Palyanova (88-100).
It is difficult to interpret the significance of some types of gold alloys without thermodynamic data describing the Au–Ag–Cu–Hg systems. Literature data on the content of copper and mercury in native gold and silver and that of silver and gold in native copper and mercury from gold deposits of different genesis were collected and analyzed. Activity coefficients of the solid solutions in Au–Ag–Cu–Hg quaternary system were estimated. The corresponding calculation module prepared for a “Selektor-C” software package allows calculation of the composition of quaternary solid solutions depending on the change in T,P,X-parameters. Ore formation scenarios were modeled for two objects: i) “hydrothermal” – on the example of formation of quaternary solid solutions in hydrothermal conditions at the Aitik Au–Ag–Cu porphyry deposit (Sweden); ii) “hydrothermal-hypergene” – on the example of formation of Au–Cu intermetallics at the Wheaton Creek placer deposit (Canada). The approach described in our work can be used as an additional tool for the analysis of the genesis of gold deposits and estimation of formation conditions of natural solid solutions of noble metals that are in many cases the main carriers of ore components.Display Omitted
Keywords: Au–Ag–Cu–Hg system; Solid solutions; Activity coefficients; Gold deposits;

Abiotic methane seepage in the Ronda peridotite massif, southern Spain by G. Etiope; I. Vadillo; M.J. Whiticar; J.M. Marques; P.M. Carreira; I. Tiago; J. Benavente; P. Jiménez; B. Urresti (101-113).
Abiotic methane in serpentinized peridotites (MSP) has implications for energy resource exploration, planetary geology, subsurface microbiology and astrobiology. Once considered a rare occurrence on Earth, reports of MSP are increasing for numerous localities worldwide in low temperature, land-based springs and seeps. We report the discovery of six methane-rich water springs and two ponds with active gas bubbling in the Ronda peridotite massif, in southern Spain. Water is hyperalkaline with typical hydrochemical features of active serpentinization (pH: 10.7 to 11.7, T: 17.1 to 21.5 °C, Ca–OH facies). Dissolved CH4 concentrations range from 0.1 to 3.2 mg/L. The methane stable C and H isotope ratios in the natural spring and bubbling sites (δ13CCH4: −12.3 to −37‰ VPDB; δ2HCH4: −280 to −333‰ VSMOW) indicate a predominant abiotic origin. In contrast, springs with manmade water systems, i.e., pipes or fountains, appear to have mixed biotic-abiotic origin (δ13CCH4: −44 to −69‰; δ2HCH4: −180 to −319‰). Radiocarbon (14C) analyses show that methane C in a natural spring is older than ca. 50,000 y BP, whereas dissolved inorganic carbon (DIC) analysed in all springs has an apparent 14C age ranging from modern to 2334 y BP. Therefore most, if not all, of the CH4 is allochthonous, i.e., not generated from the carbon in the hyperalkaline water. Methane is also released as bubbles in natural ponds and as diffuse seepages (∼101–102 mg CH4 m−2d−1) from the ground up to several tens of metres from the seeps and springs, albeit with no overt visual evidence. These data suggest that the gas follows independent migration pathways, potentially along faults or fracture systems, physically isolated from the hyperalkaline springs. Methane does not seem to be genetically related to the hyperalkaline water, which may only act as a carrier of the gas. Gas-bearing springs, vents and invisible microseepage in land-based peridotites are more common than previously thought. In addition to other geological sources, MSP is potentially a natural source of methane for the troposphere and requires more worldwide flux measurements.

Noble gases reveal the complex groundwater mixing pattern and origin of salinization in the Azraq Oasis, Jordan by Tillmann Kaudse; Refaat Bani-Khalaf; Randa Tuffaha; Florian Freundt; Werner Aeschbach-Hertig (114-128).
Azraq Oasis in the eastern Jordanian desert is an important freshwater resource of the country. Shallow groundwater reserves are heavily exploited since the 1980s and in consequence the groundwater table dropped significantly. Furthermore, some wells of the major well field drilled into the shallow aquifer show an increasing mineralization over the past 20 years. A previous study using conventional tracers did not result in a satisfactory explanation, from where the salt originates and why only a few wells are affected. In this study, the application of dissolved noble gases in combination with other tracer methods reveals a complex mixing pattern leading to the very localized salinization within the well field. It is found that primarily the wells affected by salinization 1) contain distinctly more radiogenic 4He than the other wells, indicating higher groundwater age, and 2) exhibit 3He/4He ratios that argue for an imprint of deep fluids from the Earth's mantle.However, the saline middle aquifer below is virtually free of mantle helium, which infers an upstream from an even deeper source through a nearby conductive fault. The local restriction of the salinization process is explained by the wide range of permeabilities of the involved geologic units. As the wells abstract water from the whole depth profile, they initially pump water mainly from the well conductive top rock layer. As the groundwater table dropped, this layer fell progressively dry and, depending on the local conductivity profile, some wells began to incorporate more water from the deeper part of the shallow aquifer into the discharge. These are the wells affected by salinization, because according to the presented scheme the deep part of the shallow aquifer is enriched in both salt and mantle fluids.
Keywords: Noble gases; Azraq; Jordan; Groundwater mixing; Salinization;

Reductive dissolution of arsenical ferrihydrite by bacteria by Erika Revesz; Danielle Fortin; Dogan Paktunc (129-139).
Mining and metallurgical processing of gold and base metal ores can lead to the release of arsenic into the aqueous environment as a result of the weathering and leaching of As-bearing minerals during processing and following disposal. Arsenic in process solutions and mine drainage can be effectively stabilized through the precipitation of ferrihydrite. However, under anaerobic conditions imposed by burial and waste cover systems, ferrihydrite is susceptible to microbial reduction. This research, stimulated by the paucity of information and limited understanding of the microbial reduction of arsenical ferrihydrite, was conducted on synthetic adsorbed and co-precipitated arsenical 6-line ferrihydrite (Fe/As molar ratio of 10/1) using Shewanella sp. ANA-3 and Shewanella putrefaciens CN32 in a chemically defined medium containing 0.045 mM phosphate concentration. Both bacteria were equally effective in their reducing abilities around pH 7, resulting in initial rates of formation of dissolved As(III) of 0.10 μM/h for the adsorbed, and 0.08 μM/h for the co-precipitated arsenical 6-line ferrihydrite samples. The solid phases in the post-reduction samples were characterized by powder X-ray diffraction (XRD), micro-XRD, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron microprobe and X-ray absorption spectroscopy (XAS) techniques. The results indicate the formation of secondary phases such as a biogenic Fe(II)–As(III) compound, akaganeite, goethite, hematite and possibly magnetite during bacterial reduction experiments. Holes and bacterial imprints measuring about 1–2 μm were observed on the surfaces of the secondary phases formed after 1200 h of reduction. This study demonstrates the influence of Fe and As reducing bacteria on the release of significant concentrations of more mobile and toxic As(III) species from arsenical 6-line ferrihydrite, more readily from the adsorbed than from the co-precipitated ferrihydrite.
Keywords: Ferrihydrite; Arsenic; Bacterial reduction; Reductive dissolution; Speciation; Mine waste; Shewanella sp. ANA-3; Shewanella putrefaciens CN32;

The history records of polycyclic aromatic hydrocarbons (PAHs), lead and its stable isotope ratios were determined in a sediment core to receive anthropogenic impacts on the Shilianghe Reservoir in eastern China. The historical changes of PAHs concentrations, PAHs fluxes, Pb/Al and Pb isotope ratios showed a synchronous trend throughout the core, suggesting changes in energy usage and correlating closely with the experience of a rapid economic and industrial development of the catchment, Linyi City in eastern China. PAHs isomer ratios results reveal PAHs in sediments are dominantly anthropogenic pyrogenic source, dominated by the combustion of coal and biomass. Furthermore, the Pb isotopic composition also clearly indicates that coal combustion dust mainly contributed to the Pb burden in the reservoir sediments. Based on mix end member model of Pb isotope ratios, coal combustion dust dominated anthropogenic Pb sources over fifty years contributing from 31% to 62% of total Pb in sediment. And the contribution of leaded gasoline was low than average 25%. In addition, a stable increase of coal combustion source was found in sediment core, while the contribution of leaded gasoline had declined in recent decades, with the phase-out of leaded gasoline in China.
Keywords: Anthropogenic input; PAHs; Lead isotopes; Reservoir sediments; Sediment accumulation rates; Source identification;

Isotope hydrology of the Chalk River Laboratories site, Ontario, Canada by Zell E. Peterman; Leonid A. Neymark; K.J. King-Sharp; Mel Gascoyne (149-161).
This paper presents results of hydrochemical and isotopic analyses of groundwater (fracture water) and porewater, and physical property and water content measurements of bedrock core at the Chalk River Laboratories (CRL) site in Ontario. Density and water contents were determined and water-loss porosity values were calculated for core samples. Average and standard deviations of density and water-loss porosity of 50 core samples from four boreholes are 2.73 ± 12 g/cc and 1.32 ± 1.24 percent. Respective median values are 2.68 and 0.83 indicating a positive skewness in the distributions. Groundwater samples from four deep boreholes were analyzed for strontium (87Sr/86Sr) and uranium (234U/238U) isotope ratios. Oxygen and hydrogen isotope analyses and selected solute concentrations determined by CRL are included for comparison. Groundwater from borehole CRG-1 in a zone between approximately +60 and −240 m elevation is relatively depleted in δ18O and δ2H perhaps reflecting a slug of water recharged during colder climatic conditions. Porewater was extracted from core samples by centrifugation and analyzed for major dissolved ions and for strontium and uranium isotopes. On average, the extracted water contains 15 times larger concentration of solutes than the groundwater. 234U/238U and correlation of 87Sr/86Sr with Rb/Sr values indicate that the porewater may be substantially older than the groundwater. Results of this study show that the Precambrian gneisses at Chalk River are similar in physical properties and hydrochemical aspects to crystalline rocks being considered for the construction of nuclear waste repositories in other regions.
Keywords: Chalk River Laboratories; Groundwater; Porewater; Strontium isotopes; Uranium isotopes;

Two-dimensional reactive transport modeling of the Maqarin Eastern Springs site, a natural analogue for the alteration of a fractured limestone by high-pH Portland cement waters, has been performed using the CrunchFlow code. These 2D calculations included transport by advection–dispersion–diffusion along a single fracture and diffusion in the wall rock. Solute transport was coupled to mineral dissolution and precipitation. A limited sensitivity analysis evaluated the effect of different values of primary mineral surface areas, flow velocity and sulfate concentration of the inflowing high-pH solution.Major secondary minerals include ettringite–thaumasite, C–S–H/C–A–S–H and calcite. C–S–H/C–A–S–H precipitation is controlled by the dissolution of primary silicates. Ettringite precipitation is controlled by diffusion of sulfate and aluminum from the wall rock to the fracture, with aluminum provided by the dissolution of albite. Calcite precipitation is controlled by diffusion of carbonate from the wall rock. Extents of porosity sealing along the fracture and in the fracture-wall rock interface depend on assumptions regarding flow velocity and composition of the high-pH solution. The multiple episodes of fracture sealing and reactivation evidenced in the fracture infills were not included in the simulations. Results can qualitatively reproduce the reported decrease in porosity in the fractures and in the wall rock next to the fractures. Instances of porosity increase next to fractures caused by carbonate dissolution were not reproduced by the calculations.
Keywords: Maqarin; Modeling; Fracture; Limestone; Portland cement; Advection; Diffusion; Porosity;

The water and sediments of Lake Coeur d’Alene in northern Idaho (USA) have been impacted by decades of mining operations within the Coeur d’Alene mining district. Using a multivariate statistical approach, correlations were explored between the microbial community (via 16S rDNA microarray) in sediment cores and operationally defined heavy metal phases (via continuous sequential extractions). Candidate phyla NC10, OP8 and LD1PA were only detected in metal contaminated cores and diversity doubled among Natronoanaerobium in metal contaminated cores compared to the uncontaminated control site. This may suggest some increased fitness of these phyla in contaminated sediments. In contrast, diversity within the phyla Aquificae, Coprothermobacteria, and Synergistes was at least double in the uncontaminated control site. In linear models composed of two geochemical variables from the presumed sulfate reducing lineages detected in this study, orders Desulfobacterales, Desulfuromonadales, Desulfotomaculum, and Syntrophobacterales were highly correlated with Pb (positive influence) and Zn (negative influence) in the operationally defined residual fraction, and most taxa within orders from Desulfovibrionales. Bdellovibrionales highly correlated with Pb in the exchangeable/carbonate (negative influence) and oxyhydroxide (positive influence) phases. Diversity within families from metal reducing bacterial lineages Shewanellaceae, Geobacteraceae, and Rhodocyclaceae showed high correlation with Pb in the exchangeable/carbonate (negative influence) and oxyhydroxide (positive influence) phases. To our knowledge, this is the first time these techniques have been used in combination to describe a contaminated system. Resulting correlations suggest the diversity of the microbial community was influenced primarily by partitioning of heavy metals into exchangeable Pb over other Pb phases and, to a lesser extent, residual Pb to residual Zn phase partitioning.Display Omitted
Keywords: Biogeochemistry; Coeur d'Alene; Heavy metals; Micro-array;

Bentonite is one of the more safety-critical components of the engineered barrier system in the disposal concepts developed for many types of radioactive waste. Bentonite is utilised because of its favourable properties which include plasticity, swelling capacity, colloid filtration, low hydraulic conductivity, high retardation of key radionuclides and stability in geological environments of relevance to waste disposal. However, bentonite is unstable under the highly alkaline conditions induced by Ordinary Portland Cement (OPC: initial porewater pH > 13) and this has driven interest in using low alkali cements (initial porewater pH9-11) as an alternative to OPC. To build a robust safety case for a repository for radioactive wastes, it is important to have supporting natural analogue data to confirm understanding of the likely long-term performance of bentonite in these lower alkali conditions. In Cyprus, the presence of natural bentonite in association with natural alkaline groundwater permits the zones of potential bentonite/alkaline water reaction to be studied as an analogy of the potential reaction between low alkali cement leachates and the bentonite buffer in the repository. Here, the results indicate that a cation diffusion front has moved some metres into the bentonite whereas the bentonite reaction front is restricted to a few millimetres into the clay. This reaction front shows minimal reaction of the bentonite (volumetrically, less than 1% of the bentonite), with production of a palygorskite secondary phase following reaction of the primary smectites over time periods of 105–106 years.Display Omitted
Keywords: Bentonite; Alkali leachates; Long-term reaction; Ion exchange;

Processes controlling 234U and 238U isotope fractionation and helium in the groundwater of the St. Lawrence Lowlands, Quebec: The potential role of natural rock fracturing by Pauline Méjean; Daniele L. Pinti; Marie Larocque; Bassam Ghaleb; Guillaume Meyzonnat; Sylvain Gagné (198-209).
The goal of this study is to explain the origin of 234U–238U fractionation in groundwater from sedimentary aquifers of the St. Lawrence Lowlands (Quebec, Canada), and its relationship with 3He/4He ratios, to gain insight regarding the evolution of groundwater in the region. (234U/238U) activity ratios, or (234U/238U)act, were measured in 23 groundwater samples from shallow Quaternary unconsolidated sediments and from the deeper fractured regional aquifer of the Becancour River watershed. The lowest (234U/238U)act, 1.14 ± 0.01, was measured in Ca–HCO3-type freshwater from the Quaternary Shallower Aquifer, where bulk dissolution of the carbonate allows U to migrate into water with little 234U–238U isotopic fractionation. The (234U/238U)act increases to 6.07 ± 0.14 in Na–HCO3–Cl-type groundwater. Preferential migration of 234U into water by α-recoil is the underlying process responsible for this isotopic fractionation. An inverse relationship between (234U/238U)act and 3He/4He ratios has been observed. This relationship reflects the mixing of newly recharged water, with (234U/238U)act close to the secular equilibrium and containing atmospheric/tritiogenic helium, and mildly-mineralized older water (14C ages of 6.6 kyrs), with (234U/238U)act of ≥6.07 and large amounts of radiogenic 4He, in excess of the steady-state amount produced in situ. The simultaneous fractionation of (234U/238U)act and the addition of excess 4He could be locally controlled by stress-induced rock fracturing. This process increases the surface area of the aquifer matrix exposed to pore water, from which produced 4He and 234U can be released by α-recoil and diffusion. This process would also facilitate the release of radiogenic helium at rates greater than those supported by steady-state U–Th production in the rock. Consequently, sources internal to the aquifers could cause the radiogenic 4He excesses measured in groundwater.
Keywords: (234U/238U) activity ratio; Helium isotopes; Fractured aquifers; α-recoil; 4He excess; St. Lawrence Lowlands;

Evidence of technetium and iodine release from a sodalite-bearing ceramic waste form by James J. Neeway; Nikolla P. Qafoku; Benjamin D. Williams; Michelle M.V. Snyder; Christopher F. Brown; Eric M. Pierce (210-218).
Sodalites have been proposed as a possible host of certain radioactive species, specifically 99Tc and 129I, which may be encapsulated into the cage structure of the mineral. To demonstrate the ability of this framework silicate mineral to encapsulate and immobilize 99Tc and 129I, single-pass flow-through (SPFT) tests were conducted on a sodalite-bearing multi-phase ceramic waste form produced through a steam reforming process. Two samples made using a steam reformer samples were produced using non-radioactive I and Re (as a surrogate for Tc), while a third sample was produced using actual radioactive tank waste containing Tc and added Re. One of the non-radioactive samples was produced with an engineering-scale steam reformer while the other non-radioactive sample and the radioactive sample were produced using a bench-scale steam reformer. For all three steam reformer products, the similar steady-state dilute-solution release rates for Re, I, and Tc at pH (25 °C) = 9 and 40 °C were measured. However, it was found that the Re, I, and Tc releases were equal or up to 4.5x higher compared to the release rates of the network-forming elements, Na, Al, and Si. The similar releases of Re and Tc in the SPFT test, and the similar time-dependent shapes of the release curves for samples containing I, suggest that Re, Tc, and I partition to the sodalite minerals during the steam reforming process.
Keywords: Technetium; Radioactive waste form; Mineral dissolution; Sodalite;

The release of Phosphorus (P) from river sediments has been identified as a contributing factor to waters failing the criteria for ‘Good Ecological Status’ under the EU Water Framework Directive (WFD). To identify the contribution of sediment-P to river systems, an understanding of the factors that influence its distribution within the entire non-tidal system is required. Thus the aims of this work were to examine the (i) total (PTotal) and labile (PLabile) concentrations in sediment, (ii) the sequestration processes and (iii) the interactions between sediment P and the river water in the six non-tidal water bodies of the River Nene, U.K. Collection of sediments followed a long period of flooding and high stream flow. In each water body, five cores were extracted and homogenised for analysis with an additional core being taken and sampled by depth increments. Comparing the distribution of sediment particle size and PTotal data with soil catchment geochemical survey data, large increases in PTotal were identified in sediments from water body 4–6, where median concentrations of PTotal in the sediment (3603 mg kg−1) were up to double those of the catchment soils. A large proportion of this increase may be related to in-stream sorption of P, particularly from sewage treatment facilities where the catchment becomes more urbanised after water body 3. A linear correlation (r = 0.8) between soluble reactive phosphate (SRP) and Boron in the sampled river waters was found suggesting increased STW input in water bodies 4–6.PLabile concentrations in homogenised cores were up to 100 mg kg−1 PO4–P (generally < 2% of PTotal) and showed a general increase with distance from the headwaters. A general increase in Equilibrium Phosphate Concentrations (EPC0) from an average of 0.9–∼1.7 μm L−1 was found between water bodies 1–3 and 4–6. Fixation within oxalate extractable phases (Al, Fe and Mn) accounted for ∼90% of P binding in water bodies 4–6, but only between 31 and 74% in water bodies 1–3. Statistical models predicting PTotal (R2 = 0.78), oxalate extractable P (R2 = 0.78) and Olsen P (R2 = 0.73) concentrations in river sediments identified Mn oxy-hydroxides (MnO x ) as a strong predictive variable along with the location within the river system. It is suggested that MnOx within model predictions is identifying a pool of mixed Fe–Mn oxy-hydroxides (MnO x –FeOOH) or Fe oxy-hydroxide (FeOOH) from the wider FeOxalate pool that are particularly effective at sorbing and fixing P. The findings demonstrate how sediment and P may accumulate along a 100 km non-tidal river system, the extent to which a range of processes can fix P within mineral phases and how natural flooding processes may flush sediment from the river channel. The processes identified in this study are likely to be applicable to similar river systems over their non-tidal water bodies in eastern England.
Keywords: Phosphorus; Sediment; P enrichment; Labile P; EPC0; Nene;

Diffuse soil gas emissions of gaseous elemental mercury (GEM) from hydrothermal-volcanic systems: An innovative approach by using the static closed-chamber method by F. Tassi; J. Cabassi; S. Calabrese; B. Nisi; S. Venturi; F. Capecchiacci; L. Giannini; O. Vaselli (234-241).
This study was aimed to test a new methodological approach to carry out measurements of gaseous elemental mercury (GEM) diffusively emitted from soils in hydrothermal-volcanic environments. This method was based on the use of a static closed-chamber (SCC) in combination with a Lumex® RA-915M analyzer that provides GEM measurements in a wide range of concentrations (from 2 to 50,000 ng m−3). Gas samples were collected at fixed time intervals from the SCC positioned on the ground (time-series samples). The Lumex® inlet port was equipped with a three-way Teflon valve allowing the free entrance of air through a carbon trap, in order to: (i) prevent disturbance to the Lumex® operative flow rate (10 L min−1) during the injection of the gas samples from the SCC and (ii) minimize the instability of the baseline signal induced by possible variations of GEM concentrations in air. In the lab, known amounts of GEM, pipetted from a vessel containing an Hg-saturated air in equilibrium with liquid mercury at 27 °C, were injected in the Lumex® via the modified inlet port to construct a calibration curve. The latter was used to calculate the amount of GEM in the SCC (KSCC) from the corresponding GEM concentrations measured by the Lumex® analyzer. The KSCC values of the time-series samples were proportionally increasing with the GEM fluxes (ϕGEM), thus ϕGEM values were computed according to the following equation: ϕGEM = (dKSCC/dt)/A, where A is the basal area of the SCC and dt is the time interval of the time-series sampling. Up to 214 ϕGEM measurements were carried out at Solfatara crater (Campi Flegrei, southern Italy), a hydrothermally altered tuff cone characterized by an anomalous diffuse soil emission of GEM-rich geogenic gases. The measured ϕGEM values varied up to 4 orders of magnitude, from 1,296, corresponding to the sensitivity of the method at the selected sampling time interval (1 min), to 1,957,500 ng m−2 day−1, and were consistent with those recently measured in this crater using a different method. In the field, 10 replicates were carried out in 5 selected sites, allowing to demonstrate that the proposed method has a high reproducibility (RDS < 4%). The ϕGEM and ϕCO2 values, the latter being measured in the same 214 sites by using the accumulation chamber method, showed a low correlation, although both gases were originated from the same deep source. This suggests that GEM and CO2 soil fluxes are differently affected by environmental parameters, such as soil humidity and temperature, which have a strong effect on the release of GEM from the soil, whereas they do not play a significant role in the diffuse degassing of CO2. The measured fluxes were used to compute the CO2 and GEM total outputs (402 and 5.41 × 10−6 t day−1, respectively) from the study area (92,000 m2) and to construct contour maps showing the spatial distribution of the ϕCO2 and ϕGEM values. By modifying the geometry of SCC and the time interval of the sampling series, the proposed method can be applied to the measurements of GEM soil fluxes in other geological systems and man-made environments.
Keywords: GEM flux; Diffuse soil degassing; Air pollutant; Hydrothermal gas;

Deciphering As and Cu cycling in sediment pore waters in a large marina (Port Camargue, southern France) using a multi-tracer (Fe, Mn, U, Mo) approach by Nicolas Briant; Françoise Elbaz-Poulichet; Rémi Freydier; Chrystelle Bancon-Montigny; Sophie Delpoux (242-249).
The sediments of the Port Camargue marina (South of France) are highly polluted by Cu and As (Briant et al., 2013). The dynamics of these pollutants in pore waters was investigated using redox tracers (sulfides, Fe, Mn, U, Mo) to better constrain the redox conditions.In summer, pore water profiles showed a steep redox gradient in the top 24 cm with the reduction of Fe and Mn oxy-hydroxides at the sediment water interface (SWI) and of sulfate immediately below. Below a depth of 24 cm, the Fe, Mn, Mo and U profiles in pore waters reflected Fe and Mn reducing conditions and, unlike in the overlying levels, sulfidic conditions were not observed. This unusual redox zonation was attributed to the occurrence of two distinct sediment layers: an upper layer comprising muddy organic-rich sediments underlain by a layer of relatively sandy and organic-poor sediments. The sandy sediments were in place before the building of the marina, whereas the muddy layer was deposited later. In the muddy layer, large quantities of Fe and Mo were removed in summer linked to the formation of insoluble sulfide phases. Mn, which can adsorb on Fe-sulfides or precipitate with carbonates, was also removed from pore waters. Uranium was removed probably through reduction and adsorption onto particles. In winter, in the absence of detectable pore water sulfides, removal of Mo was moderate compared to summer.Cu was released into solution at the sediment water interface but was efficiently trapped by the muddy layer, probably by precipitation with sulfides. Due to efficient trapping, today the Cu sediment profile reflects the increase in its use as a biocide in antifouling paints over the last 40 years.In the sandy layer, Fe, Mn, Mo and As were released into solution and diffused toward the top of the profile. They precipitated at the boundary between the muddy and sandy layers. This precipitation accounts for the high (75 μg g−1) As concentrations measured in the sediments at a depth of 24 cm.
Keywords: Pore water; Copper; Arsenic; Diagenesis; Redox tracers;

The basin-fill aquifers of the Western U.S. contain elevated concentrations of arsenic in the groundwater due to ancient volcanic deposits that host arsenic minerals. Microcosms were constructed using two oxidized sediments and, by contrast, a reduced sediment collected from a shallow basin-fill aquifer in the Cache Valley Basin, Northern Utah to evaluate the fate of geologic arsenic under anoxic conditions. Sequential extractions indicated the primary arsenic host mineral was amorphous iron oxides, but 13%–17% of the total arsenic was associated with carbonate minerals. Arsenic was solubilized from the sediments when incubated with groundwater in the presence of native organic carbon. Arsenic solubilization occurred prior to iron reduction rather than the commonly observed co-reactivity. Arsenic(V) associated with carbonate minerals was the main source of arsenic released to solution and redistributed onto less soluble minerals, including FeS and siderite as defined by chemical extraction. Arsenic reduction occurred only in the site-oxidized sediments. The addition of a carbon and energy source, glucose, resulted in enhanced arsenic solubilization, which was coupled with iron reduction from the site-oxidized sediments. Adding glucose promoted iron reduction that masked the role of carbonate minerals in arsenic solubilization and retention as observed with incubation with groundwater only.
Keywords: Arsenic solubilization; Carbonate minerals; Glucose; Microcosm; Iron reduction; Sediment;

Dissolved (<1 kDa) and colloidal (1 kDa-0.45 μm) size fractions of sulfate, organic carbon (OC), phosphate and 17 metals/metalloids were investigated in the acidic Vörå River and its estuary in Western Finland. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these waters. The sampling was carried out during high-water flow in autumn and in spring when the abundantly occurring acid sulfate (AS) soils in the catchment area are extensively flushed. Based on the high concentrations of sulfate, acidity and several metals, it is clear that the Vörå River and its estuary is strongly affected by AS soils. The high dissolved form of metals limits also the existence of fish and other organisms in this estuary, and certainly also in other similar shallow brackish estuaries elsewhere in the Gulf of Bothnia. However, generally already <20% saline sea water reduces the concentration for OC and several elements (Al, Cu, Cr, Fe, Pb, PO4 and U) by half and c. 20–30% saline sea water is needed to halve concentrations of Cd, Co, Mn, Ni and Zn. Consequently, these elements as well as organic matters were rapidly precipitated in the estuary, even after mixing with fairly small amounts of the alkaline brackish sea water. Aluminium, Cu, Fe and U most likely precipitate together with organic matter closest to the river mouth. Manganese is relatively persistent in solution and, thus, precipitates further down the estuary as Mn oxides, which concomitantly capture Ba, Cd, Co, Cu, Ni and Zn. In the inner estuary, the high contents of Al is as important than Fe in removing PO4 and, thus, also reducing the risk of algae blooms in near coastal areas influenced by AS soils in the Gulf of Bothnia. Moreover, the dispersion of metals far out in the estuary is dependent on hydrological conditions, i.e. with high flows the plume of metal-rich water will spread further out in the estuary. Furthermore, the extensive drainage of the catchment and subsequent artificial enlargement of the river channel during recent decades has not only enabled oxidation of sulfidic sediments, but strongly increased flow peaks that reach further out in the estuary.
Keywords: Speciation; Ultrafiltration; Acid sulfate soil; Toxicity; Colloids; Estuary; Metals;

Predictive geochemical mapping using environmental correlation by John Wilford; Patrice de Caritat; Elisabeth Bui (275-288).
The distribution of chemical elements at and near the Earth's surface, the so-called critical zone, is complex and reflects the geochemistry and mineralogy of the original substrate modified by environmental factors that include physical, chemical and biological processes over time.Geochemical data typically is illustrated in the form of plan view maps or vertical cross-sections, where the composition of regolith, soil, bedrock or any other material is represented. These are primarily point observations that frequently are interpolated to produce rasters of element distributions. Here we propose the application of environmental or covariate regression modelling to predict and better understand the controls on major and trace element geochemistry within the regolith. Available environmental covariate datasets (raster or vector) representing factors influencing regolith or soil composition are intersected with the geochemical point data in a spatial statistical correlation model to develop a system of multiple linear correlations. The spatial resolution of the environmental covariates, which typically is much finer (e.g. ∼90 m pixel) than that of geochemical surveys (e.g. 1 sample per 10-10,000 km2), carries over to the predictions. Therefore the derived predictive models of element concentrations take the form of continuous geochemical landscape representations that are potentially much more informative than geostatistical interpolations.Environmental correlation is applied to the Sir Samuel 1:250,000 scale map sheet in Western Australia to produce distribution models of individual elements describing the geochemical composition of the regolith and exposed bedrock. As an example we model the distribution of two elements – chromium and sodium. We show that the environmental correlation approach generates high resolution predictive maps that are statistically more accurate and effective than ordinary kriging and inverse distance weighting interpolation methods. Furthermore, insights can be gained into the landscape processes controlling element concentration, distribution and mobility from analysis of the covariates used in the model. This modelling approach can be extended to groups of elements (indices), element ratios, isotopes or mineralogy over a range of scales and in a variety of environments.Display Omitted
Keywords: Geochemistry; Critical zone; Regolith; Landscape processes; Data mining; Regression trees; Yilgarn craton; Australia;