Applied Geochemistry (v.24, #8)

Pilot studies for the North American Soil Geochemical Landscapes Project – Site selection, sampling protocols, analytical methods, and quality control protocols by David B. Smith; Laurel G. Woodruff; Richard M. O’Leary; William F. Cannon; Robert G. Garrett; James E. Kilburn; Martin B. Goldhaber (1357-1368).
In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada sampled and chemically analyzed soils along two transects across Canada and the USA in preparation for a planned soil geochemical survey of North America. This effort was a pilot study to test and refine sampling protocols, analytical methods, quality control protocols, and field logistics for the continental survey. A total of 220 sample sites were selected at approximately 40-km intervals along the two transects. The ideal sampling protocol at each site called for a sample from a depth of 0–5 cm and a composite of each of the O, A, and C horizons. The <2-mm fraction of each sample was analyzed for Al, Ca, Fe, K, Mg, Na, S, Ti, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y, and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4, and HF. Separate methods were used for Hg, Se, total C, and carbonate-C on this same size fraction. Only Ag, In, and Te had a large percentage of concentrations below the detection limit. Quality control (QC) of the analyses was monitored at three levels: the laboratory performing the analysis, the USGS QC officer, and the principal investigator for the study. This level of review resulted in an average of one QC sample for every 20 field samples, which proved to be minimally adequate for such a large-scale survey. Additional QC samples should be added to monitor within-batch quality to the extent that no more than 10 samples are analyzed between a QC sample. Only Cr (77%), Y (82%), and Sb (80%) fell outside the acceptable limits of accuracy (% recovery between 85 and 115%) because of likely residence in mineral phases resistant to the acid digestion.A separate sample of 0–5-cm material was collected at each site for determination of organic compounds. A subset of 73 of these samples was analyzed for a suite of 19 organochlorine pesticides by gas chromatography. Only three of these samples had detectable pesticide concentrations. A separate sample of A-horizon soil was collected for microbial characterization by phospholipid fatty acid analysis (PLFA), soil enzyme assays, and determination of selected human and agricultural pathogens. Collection, preservation and analysis of samples for both organic compounds and microbial characterization add a great degree of complication to the sampling and preservation protocols and a significant increase to the cost for a continental-scale survey. Both these issues must be considered carefully prior to adopting these parameters as part of the soil geochemical survey of North America.

Continental-scale patterns in soil geochemistry and mineralogy: Results from two transects across the United States and Canada by Laurel G. Woodruff; William F. Cannon; Dennis D. Eberl; David B. Smith; James E. Kilburn; John D. Horton; Robert G. Garrett; Rodney A. Klassen (1369-1381).
In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada (GSC) initiated a pilot study that involved collection of more than 1500 soil samples from 221 sites along two continental transects across Canada and the United States. The pilot study was designed to test and refine protocols for a soil geochemical survey of North America. The two transects crossed a wide array of soil parent materials, soil ages, climatic conditions, landforms, land covers and land uses. Sample sites were selected randomly at approximately 40-km intervals from a population defined as all soils of the continent. At each site, soils representing 0 to 5 cm depth, and the O, A, and C horizons, if present, were collected and analyzed for their near-total content of over 40 major and trace elements. Soils from 0–5 cm depth were also collected for analysis of organic compounds. Results from the transects confirm that soil samples collected at a 40-km spacing reveal coherent, continental- to subcontinental-scale geochemical and mineralogical patterns that can be correlated to aspects of underlying soil parent material, soil age and climate influence. The geochemical data also demonstrate that at the continental-scale the dominance of any of these major factors that control soil geochemistry can change across the landscape. Along both transects, soil mineralogy and geochemistry change abruptly with changes in soil parent materials. However, the chemical influence of a soil’s parent material can be obscured by changing climatic conditions. For the transects, increasing precipitation from west to east and increasing temperature from north to south affect both soil mineralogy and geochemistry because of climate effects on soil weathering and leaching, and plant productivity. Regional anomalous metal concentrations can be linked to natural variations in soil parent materials, such as high Ni and Cr in soils developed on ultramafic rocks in California or high P in soils formed on weathered Ordovician limestones in central Kentucky. On local scales, anomalous metal concentrations recognized in soil profiles, such as high P in soils from animal confinement sites, are consistent with local anthropogenic disturbances. At a larger scale, the distribution of Hg across the west to east transect demonstrates that it can be difficult to distinguish between natural or anthropogenic contributions and that many factors can contribute to an element’s spatial distribution.Only three samples in a subset of seventy-three 0–5 cm depth soil samples from the north to south transect had organochlorine pesticides values above the method detection limit, apparently related to historic usage of the pesticides DDT and dieldrin.

As a pilot study for mapping the geochemistry of North American soils, samples were collected along two continental transects extending east–west from Virginia to California, and north–south from northern Manitoba to the US–Mexican border and subjected to geochemical and mineralogical analyses. For the northern Manitoba–North Dakota segment of the north–south transect, X-ray diffraction analysis and bivariate relations indicate that geochemical properties of soil parent materials may be interpreted in terms of minerals derived from Shield and clastic sedimentary bedrock, and carbonate sedimentary bedrock terranes. The elements Cu, Zn, Ni, Cr and Ti occur primarily in silicate minerals decomposed by aqua regia, likely phyllosilicates, that preferentially concentrate in clay-sized fractions; Cr and Ti also occur in minerals decomposed only by stronger acid. Physical glacial processes affecting the distribution and concentration of carbonate minerals are significant controls on the variation of trace metal background concentrations.

Quantitative mineralogy correlates with major-, minor- and trace-element chemistry for 387 samples of A-horizon and deeper soils collected from east–west and north–south transects across the USA and Canada, where the deeper soils were collected beneath the A-horizon samples. Concentrations of the major elements correlate with specific mineral phases. Minor- and trace-element concentrations correlate with the same phases as the major elements with which they share similar geochemical behavior. Concentrations of quartz and feldspar correlate with precipitation trends east of the Rocky Mountains, and are independent of the underlying rock type and age, indicating that the weathering of soils in this region may have reached a steady-state mineralogy. Other trends in mineralogy relate to physiographic province. The combination of quantitative mineralogy and chemical analysis yields a much richer portrait of soils than can be gained from chemistry alone, because the origins of chemical trends and the chemical availability of specific elements are related to mineralogy.

To support the development of protocols for the proposed North American Soil Geochemical Landscapes project, whose objective is to establish baselines for the geochemistry of North American soils, two continental-scale transects across the United States and Canada were sampled in 2004. The sampling employed a spatially stratified random sampling design in order to estimate the variability between 40-km linear sampling units, within them, at sample sites, and due to sample preparation and analytical chemical procedures. The 40-km scale was chosen to be consistent with the density proposed for the continental-scale project. The two transects, north–south (N–S) from northern Manitoba to the USA–Mexico border near El Paso, Texas, and east–west (E–W) from the Virginia shore north of Washington, DC, to north of San Francisco, California, closely following the 38th parallel, have been studied individually. The purpose of this study was to determine if statistically significant systematic spatial variation occurred along the transects. Data for 38 major, minor and trace elements in A- and C-horizon soils where less than 5% of the data were below the detection limit were investigated by Analysis of Variance (ANOVA). A total of 15 elements (K, Na, As, Ba, Be, Ce, La, Mn, Nb, P, Rb, Sb, Th, Tl and W) demonstrated statistically significant (p  < 0.05) variability at the between-40-km scale for both horizons along both transects. Only Cu failed to demonstrate significant variability at the between-40-km scale for both soil horizons along both transects.The patterns of relative variability differ by transect and horizon. The N–S transect A-horizon soils show significant between-40-km scale variability for 29 elements, with only 4 elements (Ca, Mg, Pb and Sr) showing in excess of 50% of their variability at the within-40-km and ‘at-site’ scales. In contrast, the C-horizon data demonstrate significant between-40-km scale variability for 26 elements, with 21 having in excess of 50% of their variability at the within-40-km and ‘at-site’ scales. In 36 instances, the ‘at-site’ variability is statistically significant in terms of the sample preparation and analysis variability. It is postulated that this contrast between the A- and C- horizons along the N–S transect, that is dominated by agricultural land uses, is due to the local homogenization of Ap-horizon soils by tillage reducing the ‘at-site’ variability. The spatial variability is distributed similarly between scales for the A- and C-horizon soils of the E–W transect. For all elements, there is significant variability at the within-40-km scale. Notwithstanding this, there is significant between-40-km variability for 28 and 20 of the elements in the A- and C-horizon data, respectively. The differences between the two transects are attributed to (1) geology, the N–S transect runs generally parallel to regional strikes, whereas the E–W transect runs across regional structures and lithologies; and (2) land use, with agricultural tillage dominating along the N–S transect. The spatial analysis of the transect data indicates that continental-scale maps demonstrating statistically significant patterns of geochemical variability may be prepared for many elements from data on soil samples collected on a 40 × 40 km grid or similar sampling designs resulting in a sample density of 1 site per 1600 km2.

Geochemistry of soils along a transect from Central Mexico to the Pacific Coast: A pilot study for continental-scale geochemical mapping by J.A. Chiprés; A. de la Calleja; J.I. Tellez; F. Jiménez; C. Cruz; E.G. Guerrero; J. Castro; M.G. Monroy; J.C. Salinas (1416-1428).
The Mexican Geological Survey (SGM), the National Institute of Statistics, Geography and Informatics (INEGI) and the Autonomous University of San Luis Potosi (UASLP) have established a multidisciplinary team with the objective of creating a national program of geochemical mapping of soils in Mexico. This is being done as part of the North American Soil Geochemical Landscapes Project in partnership with the US Geological Survey and the Geological Survey of Canada. As the first step, a pilot study was conducted over a transect that extends from the Mexico–US border near Ciudad Juarez in the north to the Pacific Ocean in the south. This pilot transect was conducted in two phases, and this paper presents results from the first phase, which sampled soils at about a 40-km spacing along a 730-km transect beginning in Central Mexico and ending at the Pacific Coast. Samples were collected from the A and C horizons at each site and 60 elements were analyzed. This pilot study demonstrates that geochemical mapping based on a 40-km spacing is adequate to identify broad-scale geochemical patterns. Geologic influence (i.e., soil parent material) was the most important factor influencing the distribution of elements along the transect, followed by the influence of regional mineralization. The study also showed that influence by human activities over the transect is minimal except possibly in large mining districts. A comparison of element abundance in the A horizon with the environmental soil guidelines in Mexico showed that the natural concentrations of the studied soils were lower than the established threshold for soil restoration with the exception of V and As. The former had a median value (75 mg/kg) approximately equal to the value established in Mexico for soil restoration in agricultural and residential lands (78 mg/kg), and the latter had three values higher than the 22 mg/kg threshold for soil restoration in agricultural and residential lands. These cases demonstrate the importance of knowing the national- and regional-scale geochemistry of Mexican soils as a support for the decision-making process, particularly for the proper formulation and application of soil guidelines designed to protect human and ecosystem health.

National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

An objective of the North American Soil Geochemical Landscapes Project is to provide relevant data concerning bioaccessible concentrations of elements in soil to government and other institutions undertaking environmental studies. A protocol was developed that employs a 1-g soil sample agitated overnight with 40 mL of reverse-osmosis de-ionized water for 20 h, and determination of 63 elements following three steps of centrifugation by inductively coupled plasma–atomic emission spectrometry and inductively coupled plasma–mass spectrometry the following day. Statistical summaries are presented for those 48 elements (Ag, Al, As, B, Ba, Be, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Si, Sm, Sn, Sr, Tb, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, and pH) for which <20% of their data were reported as below the detection limit. The resulting data set contains analyses for 161 A-horizon soils collected along two transects, one along the 38th parallel across the USA and the other from northern Manitoba to the USA–Mexico border. The spatial distribution of three selected elements (Ca, Cu, and Pb) along the two transects is discussed in this paper both as absolute amounts liberated by the leach and expressed as a percentage of the total, or near-total, amounts determined for the elements. The Ca data reflect broad trends in soil parent materials, their weathering, and subsequent soil development. Calcium concentrations are generally found to be lower in the older soils of the eastern USA. The Cu data are higher in the eastern half of the USA, correlating with soil organic C, with which it is sequestered. The Pb data exhibit little regional variability due to natural sources, but are influenced by anthropogenic sources. Based on the Pb results, the percentage water-extractable data demonstrate promise as a tool for identifying anthropogenic components. The soil–water partition (distribution) coefficients, Kds (L/kg), were determined and their relevance to estimating bioaccessible amounts of elements to soil fauna and flora is discussed. Finally, a possible link between W concentrations in human urine and water-extractable W levels in Nevada soils is discussed.

In vitro bioaccessibility tests (IVBA) are inexpensive, physiologically-based extraction tests designed to estimate the bioaccessibility of elements along ingestion exposure pathways. Published IVBA protocols call for the testing to be done on the <250-μm fraction of soil, as these particles are most likely to adhere to the hands of children and be ingested. Most IVBA in the literature to date have been applied to soil samples from highly contaminated sites or to spiked samples, and relatively little work has been done to evaluate bioaccessibility of elements in a wide variety of uncontaminated ‘background’ soils.In 2004, the US Geological Survey and the Geological Survey of Canada sampled soils along north–south and east–west transects across the two countries to test and refine sampling and analytical protocols recommended for the planned soil geochemical survey of North America. Samples were collected at 220 sites selected randomly at approximately 40-km intervals. The focus of the investigation presented in this paper was twofold: (1) to begin to examine variations in bioaccessibility of As, Cd, Cr, Ni and Pb in a number of ‘background’ (i.e., unpolluted) soils from around North America and (2) to determine if there are significant differences that would preclude using the standard size fraction of <2 mm for extraction with a simulated gastric fluid as an expeditious and inexpensive bioaccessibility screening tool for the large numbers of future samples to be collected by this continental-scale project. A subset of 20 soil samples collected along the north–south transect at a depth of 0–5 cm was used for this study. Two separate size fractions (<2 mm and <250 μm) were extracted using a simulated human gastric fluid consisting of a solution of HCl and glycine adjusted to a pH of 1.5. In general, the leachate results for the <2-mm size fraction were not substantially different than those for the <250-μm size fraction for concentrations of As, Cd, Cr, Ni and Pb. Leachate concentrations for Cd, Ni and Pb appear to be controlled to some extent by the total concentration of the element in soil. Bioaccessibility of the elements in this study decreased in the order, Cd > Pb > Ni > As > Cr.

Soil samples were collected along a north–south transect extending from Manitoba, Canada, to the US–Mexico border near El Paso, Texas in 2004 (104 samples), a group of sites within New Orleans, Louisiana following Hurricane Katrina in 2005 (19 samples), and a Gulf Coast transect extending from Sulphur, Louisiana, to DeFuniak Springs, Florida, in 2007 (38 samples). Samples were collected from the top 40 cm of soil and were screened for the presence of total Bacillus species and Bacillus anthracis (anthrax), specifically using multiplex-polymerase chain reaction (PCR). Using an assay with a sensitivity of ∼170 equivalent colony-forming units (CFU) g−1 field moist soil, the prevalence rate of Bacillus sp./B. anthracis in the north–south transect and the 2005 New Orleans post-Katrina sample set were 20/5% and 26/26%, respectively. Prevalence in the 2007 Gulf Coast sample set using an assay with a sensitivity of ∼4 CFU g−1 of soil was 63/0%. Individual transect-set data indicate a positive relation between occurrences of species and soil moisture or soil constituents (i.e., Zn and Cu content). The 2005 New Orleans post-Katrina data indicated that B. anthracis is readily detectable in Gulf Coast soils following flood events. The data also indicated that occurrence, as it relates to soil chemistry, may be confounded by flood-induced dissemination of germinated cells and the mixing of soil constituents for short temporal periods following an event.

In 2004, soils were collected at 220 sites along two transects across the USA and Canada as a pilot study for a planned soil geochemical survey of North America (North American Soil Geochemical Landscapes Project). The objective of the current study was to examine the potential of diffuse reflectance (DR) Fourier Transform (FT) mid-infrared (mid-IR) and near-infrared (NIRS) spectroscopy to reduce the need for conventional analysis for the determination of major and trace elements in such continental-scale surveys. Soil samples (n  = 720) were collected from two transects (east–west across the USA, and north–south from Manitoba, Canada to El Paso, Texas (USA), n  = 453 and 267, respectively). The samples came from 19 USA states and the province of Manitoba in Canada. They represented 31 types of land use (e.g., national forest, rangeland, etc.), and 123 different land covers (e.g., soybeans, oak forest, etc.). The samples represented a combination of depth-based sampling (0–5 cm) and horizon-based sampling (O, A and C horizons) with 123 different depths identified. The set was very diverse with few samples similar in land use, land cover, etc. All samples were analyzed by conventional means for the near-total concentration of 49 analytes (Ctotal, Ccarbonate and Corganic, and 46 major and trace elements). Spectra were obtained using dried, ground samples using a Digilab FTS-7000 FT spectrometer in the mid- (4000–400 cm−1) and near-infrared (10,000–4000 cm−1) at 4 cm−1 resolution (64 co-added scans per spectrum) using a Pike AutoDIFF DR autosampler. Partial least squares calibrations were develop using: (1) all samples as a calibration set; (2) samples evenly divided into calibration and validation sets based on spectral diversity; and (3) samples divided to have matching analyte concentrations in calibration and validation sets. In general, results supported the conclusion that neither mid-IR nor NIRS would be particularly useful in reducing the need for conventional analysis of soils from this continental-scale geochemical survey. The extreme sample diversity, likely caused by the widely varied parent material, land use at the site of collection (e.g., grazing, recreation, agriculture, etc.), and climate resulted in poor calibrations even for Ctotal, Corganic and Ccarbonate. The results indicated potential for mid-IR and NIRS to differentiate soils containing high concentrations (>100 mg/kg) of some metals (e.g., Co, Cr, Ni) from low-level samples (<50 mg/kg). However, because of the small number of high-level samples, it is possible that differentiation was based on factors other than metal concentration. Results for Mg and Sr were good, but results for other metals examined were fair to poor, at best. In essence, it appears that the great variation in chemical and physical properties seen in soils from this continental-scale survey resulted in each sample being virtually unique. Thus, suitable spectroscopic calibrations were generally not possible.

A regional soil and sediment geochemical study in northern California by Martin B. Goldhaber; Jean M. Morrison; JoAnn M. Holloway; Richard B. Wanty; Dennis R. Helsel; David B. Smith (1482-1499).
Regional-scale variations in soil geochemistry were investigated in a 20,000-km2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated concentrations in soils overlying volcanic and plutonic rocks at higher elevations in the Sierras (e.g. median La = 28 mg/kg) and the east side of the Sacramento Valley (median 20 mg/kg) compared to soils overlying ultramafic rocks in the Sierra Nevada foothills (median 15 mg/kg) and the western Sacramento Valley (median 14 mg/kg). The segregation of soil geochemistry into distinctive groupings across the Sacramento River arises from the former presence of a natural levee (now replaced by an artificial one) along the banks of the river. This levee has been a barrier to sediment transport. Sediment transport to the Valley by glacial outwash from higher elevations in the Sierra Nevada and, more recently, debris from placer Au mining has dominated sediment transport to the eastern Valley. High content of mafic elements (and low content of silicic elements) in surface soil in the west side of the valley is due to a combination of lack of silicic source rocks, transport of ultramafic rock material from the Coast Ranges, and input of sediment from the late Mesozoic Great Valley Group, which is itself enriched in mafic elements. A third group of elements (Zn, Cd, As and Cu) reflect the impact of mining activity. Soil with elevated content of these elements occurs along the Sacramento River in both levee and adjacent flood basin settings. It is interpreted that transport of sediment down the Sacramento River from massive sulfide mines in the Klamath Mountains to the north has caused this pattern. The Pb, and to some extent Zn, distribution patterns are strongly impacted by anthropogenic inputs. Elevated Pb content is localized in major cites and along major highways due to inputs from leaded gasoline. Zinc has a similar distribution pattern but the source is tire wear.

A regional-scale study of chromium and nickel in soils of northern California, USA by Jean M. Morrison; Martin B. Goldhaber; Lopaka Lee; JoAnn M. Holloway; Richard B. Wanty; Ruth E. Wolf; James F. Ranville (1500-1511).
A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700–10,000 mg/kg Cr and 1300–3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80–1420 mg/kg Cr and 65–224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30–370 mg/kg Cr and 16–110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada.Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 μg L−1 and averaging 16.4 μg L−1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.

Regional patterns in ground- and surface-water chemistry of the southern Sacramento Valley in California were evaluated using publicly available geochemical data from the US Geological Survey’s National Water Information System (NWIS). Within the boundaries of the study area, more than 2300 ground-water analyses and more than 20,000 surface-water analyses were available. Ground-waters from the west side of the Sacramento Valley contain greater concentrations of Na, Ca, Mg, B, Cl and SO4, while the east-side ground-waters contain greater concentrations of silica and K. These differences result from variations in surface-water chemistry as well as from chemical reactions between water and aquifer materials. Sediments that fill the Sacramento Valley were derived from highlands to the west (the Coast Ranges) and east (the Sierra Nevada Mountains), the former having an oceanic provenance and the latter continental. These geologic differences are at least in part responsible for the observed patterns in ground-water chemistry. Thermal springs that are common along the west side of the Sacramento Valley appear to have an effect on surface-water chemistry, which in turn may affect the ground-water chemistry.

Serpentinized ultramafic rocks and associated soils in northern California are characterized by high concentrations of Cr and Ni, low levels of radioelements (K, Th, and U) and high amounts of ferrimagnetic minerals (primarily magnetite). Geophysical attributes over ultramafic rocks, which include airborne gamma-ray and magnetic anomaly data, are quantified and provide indirect measurements on the relative abundance of radioelements and magnetic minerals, respectively. Attributes are defined through a statistical modeling approach and the results are portrayed as probabilities in chart and map form. Two predictive models are presented, including one derived from the aeromagnetic anomaly data and one from a combination of the airborne K, Th and U gamma-ray data. Both models distinguish preferential values within the aerogeophysical data that coincide with mapped and potentially unmapped ultramafic rocks. The magnetic predictive model shows positive probabilities associated with magnetic anomaly highs and, to a lesser degree, anomaly lows, which accurately locate many known ultramafic outcrops, but more interestingly, locate potentially unmapped ultramafic rocks, possible extensions of ultramafic bodies that dip into the shallow subsurface, as well as prospective buried ultramafic rocks. The airborne radiometric model shows positive probabilities in association with anomalously low gamma radiation measurements over ultramafic rock, which is similar to that produced by gabbro, metavolcanic rock, and water bodies. All of these features share the characteristic of being depleted in K, Th and U. Gabbro is the only rock type in the study area that shares similar magnetic properties with the ultramafic rock. The aerogeophysical model results are compared to the distribution of ultramafic outcrops and to Cr, Ni, K, Th and U concentrations and magnetic susceptibility measurements from soil samples. Analysis of the soil data indicates high positive correlation between magnetic susceptibilities and concentration of Cr and Ni. Although the study focused on characterizing the geophysical properties of ultramafic rocks and associated soils, it has also yielded information on other rock types in addition to ultramafic rocks, which can also locally host naturally-occurring asbestos; specifically, gabbro and metavolcanic rocks.

Historic Hg mining in the Cache Creek watershed in the Central California Coast Range has contributed to the downstream transport of Hg to the San Francisco Bay-Delta. Different aspects of Hg mobilization in soils, including pedogenesis, fluvial redistribution of sediment, volatilization and eolian transport were considered. The greatest soil concentrations (>30 mg Hg kg−1) in Cache Creek are associated with mineralized serpentinite, the host rock for Hg deposits. Upland soils with non-mineralized serpentine and sedimentary parent material also had elevated concentrations (0.9–3.7 mg Hg kg−1) relative to the average concentration in the region and throughout the conterminous United States (0.06 mg kg−1). Erosion of soil and destabilized rock and mobilization of tailings and calcines into surrounding streams have contributed to Hg-rich alluvial soil forming in wetlands and floodplains. The concentration of Hg in floodplain sediment shows sediment dispersion from low-order catchments (5.6–9.6 mg Hg kg−1 in Sulphur Creek; 0.5–61 mg Hg kg−1 in Davis Creek) to Cache Creek (0.1–0.4 mg Hg kg−1). These sediments, deposited onto the floodplain during high-flow storm events, yield elevated Hg concentrations (0.2–55 mg Hg kg−1) in alluvial soils in upland watersheds. Alluvial soils within the Cache Creek watershed accumulate Hg from upstream mining areas, with concentrations between 0.06 and 0.22 mg Hg kg−1 measured in soils ∼90 km downstream from Hg mining areas. Alluvial soils have accumulated Hg released through historic mining activities, remobilizing this Hg to streams as the soils erode.

Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop—Zones A–C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite–smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C were acquired over 1 Ma. Compositional differences between soil and Zone C are largely attributed to illuvial processes, formation of additional Fe(III) oxides and incorporation of modern organic matter.

Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements by Michele L.W. Tuttle; George N. Breit; Martin B. Goldhaber (1565-1578).
During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies.Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.

The threshold between geochemical background and anomalies can be influenced by the methodology selected for its estimation. Environmental evaluations, particularly those conducted in mineralized areas, must consider this when trying to determinate the natural geochemical status of a study area, quantifying human impacts, or establishing soil restoration values for contaminated sites. Some methods in environmental geochemistry incorporate the premise that anomalies (natural or anthropogenic) and background data are characterized by their own probabilistic distributions. One of these methods uses exploratory data analysis (EDA) on regional geochemical data sets coupled with a geographic information system (GIS) to spatially understand the processes that influence the geochemical landscape in a technique that can be called a spatial data analysis (SDA). This EDA–SDA methodology was used to establish the regional background range from the area of Catorce–Matehuala in north-central Mexico. Probability plots of the data, particularly for those areas affected by human activities, show that the regional geochemical background population is composed of smaller subpopulations associated with factors such as soil type and parent material. This paper demonstrates that the EDA–SDA method offers more certainty in defining thresholds between geochemical background and anomaly than a numeric technique, making it a useful tool for regional geochemical landscape analysis and environmental geochemistry studies.

The concentrations of 45 elements in ambient (not obviously disturbed) surface soils were determined for 57 sites distributed throughout the city of Chicago, Illinois in the upper Midwestern United States. These concentrations were compared to soils from 105 sites from a largely agricultural region within a 500-km radius surrounding the city and to soils collected from 90 sites across the state of Illinois. Although the bulk composition of the Chicago urban soils reflects largely natural sources, the soils are significantly enriched in many trace elements, apparently from anthropogenic sources. The median concentration of Pb in Chicago soils is 198 mg/kg, a 13-fold enrichment compared to regional concentrations. Zinc (median 235 mg/kg), Cu (59 mg/kg), and Ni (31 mg/kg) are also enriched from 2- to 4-fold in Chicago soils and all four elements show strong mutual correlations. These elevated concentrations are most likely related to vehicular and roadway sources and represent uneven distribution across the city as airborne material. Other airborne particulate material from a combination of fossil fuel combustion, waste incineration, and steel production may contribute to apparent elevated concentrations in Chicago soil of Fe (median 2.9%), Mo (5 mg/kg), V (82 mg/kg) and S (0.09%). Chicago soils are enriched from about 1.6- to 3-fold in these elements. Enrichments in P and Se may be caused by direct addition of phosphate fertilizer to parklands, lawns and gardens. The density of the sampling (1 site per 10 km2) is inadequate to define the distribution of the observed enrichments within the city or to predict soil compositions for most of the areas between sample sites, but does provide a statistically significant signature of the history of urban and industrial activity within the city in contrast to the surrounding agricultural lands.

Process recognition in multi-element soil and stream-sediment geochemical data by Eric C. Grunsky; Lawrence J. Drew; David M. Sutphin (1602-1616).
Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A “winnowing index” was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment–soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others.