Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home Submit News 'Terminator' Polymer: Self-Healing Polymer That Spontaneously and Independently Repairs Itself
Navigation
Log in


Forgot your password?
New user?
Site Search
 
Search only the current folder (and sub-folders)
 
Document Actions

'Terminator' Polymer: Self-Healing Polymer That Spontaneously and Independently Repairs Itself

by ScienceDaily last modified 09-13-13 07:31 AM
Contributors: ScienceDaily
'Terminator' Polymer: Self-Healing Polymer That Spontaneously and Independently Repairs Itself

The elastomer mends itself after being cut in two by a razor blade and can be manually stretched without rupture. (Credit: Image courtesy of Royal Society of Chemistry)

Sep. 13, 2013 — Scientists report the first self-healing thermoset elastomer that requires no intervention to induce its repair.

Self-healing polymers mend themselves by reforming broken cross-linking bonds. However, the cross-linking healing mechanism usually requires an external stimulus.

Triggers to promote bond repair include energy inputs, such as heat or light, or specific environmental conditions, such as pH. Self-healing polymers that can spontaneously achieve quantitative healing in the absence of a catalyst have never been reported before, until now.

Ibon Odriozola previously came close when his group at the CIDETEC Centre for Electrochemical Technologies in Spain developed self-healing silicone elastomers using silver nanoparticles as cross-linkers. Unfortunately, an applied external pressure was required and the expensive sliver component disfavoured commercialisation. But now they have achieved their goal to prepare self-healing elastomers from common polymeric starting materials using a simple and inexpensive approach.

An industrially familiar, permanently cross-linked poly(urea-urethane) elastomeric network was demonstrated to completely mend itself after being cut in two by a razor blade. It is the metathesis reaction of aromatic disulphides, which naturally exchange at room temperature, that causes regeneration.

Ibon stresses the use of commercially available materials is important for industrial applications. He says the polymer behaves as if it was alive, always healing itself and has dubbed it a "terminator" polymer -- a tribute to the shape-shifting, molten T-1000 terminator robot from the Terminator 2 film. It acts as a velcro-like sealant or adhesive, displaying an impressive 97% healing efficiency in just two hours and does not break when stretched manually.

David Mecerreyes, a polymer chemistry specialist at the University of the Basque Country in Spain, sees opportunities to use this elastomer to improve the security and duration of many plastic parts, for example in cars, houses, electrical components and biomaterials.

'The introduction of a room temperature exchangeable covalent bond in classic thermoset elastomers provides unique autonomous self-healing abilities without comprising the pristine material properties,' says Richard Hoogenboom, head of the Supramolecular Chemistry group at Ghent University in Belgium. 'Close resemblance of this novel self-healing thermoset elastomer with current commercial materials makes it highly interesting for extending the lifetime of such materials.'

Future work by the group will concentrate on stronger polymeric materials as the current poly(urea-urethane) composite is relatively soft.

http://www.sciencedaily.com/releases/2013/09/130913101819.htm

Story Source:

The above story is based on materials provided by Royal Society of Chemistry.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal References:

Alaitz Rekondo, Roberto Martin, Alaitz Ruiz de Luzuriaga, Germán Cabañero, Hans J. Grande and Ibon Odriozola. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz., 2014 (in press) DOI: 10.1039/C3MH00061C

Roberto Martín, Alaitz Rekondo, Jon Echeberria, Germán Cabañero, Hans J. Grande, Ibon Odriozola. Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. Chemical Communications, 2012; 48 (66): 8255 DOI: 10.1039/c2cc32030d

Sponsors
Web Search
 

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: