Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home Submit News Chemists Develop Single Molecule Sieves to Separate Complex Molecular Mixtures
Navigation
Log in


Forgot your password?
New user?
Site Search
 
Search only the current folder (and sub-folders)
 
Document Actions

Chemists Develop Single Molecule Sieves to Separate Complex Molecular Mixtures

by ScienceDaily last modified 02-18-13 04:28 AM
Contributors: ScienceDaily
Chemists Develop Single Molecule Sieves to Separate Complex Molecular Mixtures

Professor Cooper: “The holes in these cage molecules act like a shape-selective molecular sieve, rather like a children’s wooden shape puzzle.” (Credit: Image courtesy of University of Liverpool)

Feb. 15, 2013 — Chemists at the University of Liverpool have created a new technique that could be used in industry to separate complex organic chemical mixtures.

Chemical feedstocks containing benzene are used extensively in industry to create modern materials and polymers. Their use relies heavily on distillation techniques which separate complex mixtures into more simple molecules used as building blocks to develop drugs, plastics and new materials. These distillation techniques can be expensive and involve large amounts of energy for hard-to-separate mixtures.

A team of researchers at the University's Department of Chemistry, led by Professor Andrew Cooper, have created organic molecular crystals that are able to separate important organic aromatic molecules by their molecular shape.

Professor Cooper said: "We were able to demonstrate this new molecule separation technique by synthesising porous organic cage molecules that are highly similar in shape to the molecules that need to be separated.

"The holes in these cage molecules act like a shape-selective molecular sieve, rather like a children's wooden shape puzzle. Using computer simulations we revealed how the porous cages separate the aromatic feedstocks and show that, unlike a wooden shape puzzle, the mechanism actually involves flexibility and motion in the cage sieves. "

The ability to separate complex molecules using less energy will be important in the future for current petrochemical and chemical industries and for producing any next-generation sustainable bio-derived chemicals.

http://www.sciencedaily.com/releases/2013/02/130217084906.htm

Story Source:

The above story is reprinted from materials provided byUniversity of Liverpool.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

 

Journal Reference:

  1. Tamoghna Mitra, Kim E. Jelfs, Marc Schmidtmann, Adham Ahmed, Samantha Y. Chong, Dave J. Adams, Andrew I. Cooper. Molecular shape sorting using molecular organic cagesNature Chemistry, 2013; DOI:10.1038/nchem.1550
Sponsors
Web Search
 

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: