|
|
Amino Acids: The Forum for Amino Acid, Peptide and Protein Research (v.37, #1)
Amino acids: metabolism, functions, and nutrition
by Guoyao Wu (pp. 1-17).
Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.
Keywords: Amino acids; Health; Metabolism; Nutrition
Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids
by Rajavel Elango; Ronald O. Ball; Paul B. Pencharz (pp. 19-27).
Due to advances made in the development of stable isotope based carbon oxidation methods, the determination of amino acid requirements in humans has been an active area of research for the past 2 decades. The indicator amino acid oxidation (IAAO) method developed in our laboratory for humans has been systematically applied to determine almost all indispensable amino acid requirements in adult humans. Nutritional application of experimentally derived amino acid requirement estimates depends upon the capacity of food proteins to meet the amino acid requirements in humans. Therefore, there is a need to know the proportion of dietary amino acids which are bioavailable, or metabolically available to the body for protein synthesis following digestion and absorption. Although this concept is widely applied in animal nutrition, it has not been applied to human nutrition due to lack of data. We developed a new in vivo method in growing pigs to identify the metabolic availability of amino acids in foods using the IAAO concept. This metabolic availability method has recently been adapted for use in humans. As this newly developed IAAO based method to determine metabolic availability of amino acids in foods is suitable for rapid and routine analysis in humans, it is a major step forward in defining the protein quality of food sources and integrating amino acid requirement data with dietary amino acid availability of foods.
Keywords: Amino acid requirements; Humans; Indicator amino acid oxidation; Bioavailability; Metabolic availability
Advances in protein–amino acid nutrition of poultry
by David H. Baker (pp. 29-41).
The ideal protein concept has allowed progress in defining requirements as well as the limiting order of amino acids in corn, soybean meal, and a corn–soybean meal mixture for growth of young chicks. Recent evidence suggests that glycine (or serine) is a key limiting amino acid in reduced protein [23% crude protein (CP) reduced to 16% CP] corn–soybean meal diets for broiler chicks. Research with sulfur amino acids has revealed that small excesses of cysteine are growth depressing in chicks fed methionine-deficient diets. Moreover, high ratios of cysteine:methionine impair utilization of the hydroxy analog of methionine, but not of methionine itself. A high level of dietary l-cysteine (2.5% or higher) is lethal for young chicks, but a similar level of dl-methionine, l-cystine or N-acetyl-l-cysteine causes no mortality. A supplemental dietary level of 3.0% l-cysteine (7× requirement) causes acute metabolic acidosis that is characterized by a striking increase in plasma sulfate and decrease in plasma bicarbonate. S-Methylmethionine, an analog of S-adenosylmethionine, has been shown to have choline-sparing activity, but it only spares methionine when diets are deficient in choline and(or) betaine. Creatine, or its precursor guanidinoacetic acid, can spare dietary arginine in chicks.
Keywords: Glycine; Ideal protein; Sulfur amino acids; Methionine; Cysteine; S-Methylmethionine; Guanidinoacetate
New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds
by Peng Li; Kangsen Mai; Jesse Trushenski; Guoyao Wu (pp. 43-53).
Recent evidence shows that some amino acids and their metabolites are important regulators of key metabolic pathways that are necessary for maintenance, growth, feed intake, nutrient utilization, immunity, behavior, larval metamorphosis, reproduction, as well as resistance to environmental stressors and pathogenic organisms in various fishes. Therefore, conventional definitions on essential and nonessential amino acids for fish are challenged by numerous discoveries that taurine, glutamine, glycine, proline and hydroxyproline promote growth, development, and health of aquatic animals. On the basis of their crucial roles in cell metabolism and physiology, we anticipate that dietary supplementation with specific amino acids may be beneficial for: (1) increasing the chemo-attractive property and nutritional value of aquafeeds with low fishmeal inclusion; (2) optimizing efficiency of metabolic transformation in juvenile and sub-adult fishes; (3) surpressing aggressive behaviors and cannibalism; (4) increasing larval performance and survival; (5) mediating timing and efficiency of spawning; (6) improving fillet taste and texture; and (7) enhancing immunity and tolerance to environmental stresses. Functional amino acids hold great promise for development of balanced aquafeeds to enhance the efficiency and profitability of global aquaculture production.
Keywords: Amino acids; Fish; Health; Growth; Aquafeeds; Aquaculture
Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels
by M. H. Stipanuk; I. Ueki; J. E. Dominy Jr; C. R. Simmons; L. L. Hirschberger (pp. 55-63).
Cysteine catabolism in mammals is dependent upon cysteine dioxygenase (CDO), an enzyme that adds molecular oxygen to the sulfur of cysteine, converting the thiol to a sulfinic acid known as cysteinesulfinic acid (3-sulfinoalanine). CDO is one of the most highly regulated metabolic enzymes responding to diet that is known. It undergoes up to 45-fold changes in concentration and up to 10-fold changes in catalytic efficiency. This provides a remarkable responsiveness of the cell to changes in sulfur amino acid availability: the ability to decrease CDO activity and conserve cysteine when cysteine is scarce and to rapidly increase CDO activity and catabolize cysteine to prevent cytotoxicity when cysteine supply is abundant. CDO in both liver and adipose tissues responds to changes in dietary intakes of protein and/or sulfur amino acids over a range that encompasses the requirement level, suggesting that cysteine homeostasis is very important to the living organism.
Keywords: Cysteine; Cysteine dioxygenase; Amino acid derived cofactor; Hypotaurine; Taurine; Sulfate
Amino acids and gaseous signaling
by Xilong Li; Fuller W. Bazer; Haijun Gao; Wenjuan Jobgen; Gregory A. Johnson; Peng Li; Jason R. McKnight; M. Carey Satterfield; Thomas E. Spencer; Guoyao Wu (pp. 65-78).
Gases, such as nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) are known toxic pollutants in the air. However, they are now recognized as important signaling molecules synthesized in animals and humans from arginine, glycine (heme), and cysteine, respectively. At physiological levels, NO, CO, and SO2 activate guanylyl cyclase to generate cGMP which elicits a variety of responses (including relaxation of vascular smooth muscle cells, hemodynamics, neurotransmission, and cell metabolism) via cGMP-dependent protein kinases. H2S is also a crucial regulator of both neurological function and endothelium-dependent relaxation through cGMP-independent mechanisms involving stimulation of membrane KATP channels and intracellular cAMP signaling. Additionally, NO, CO, and H2S confer cytoprotective and immunomodulatory effects. Moreover, NH3 is a major product of amino acid catabolism and profoundly affects the function of neurons and the vasculature through glutamine-dependent inhibition of NO synthesis. Emerging evidence shows that amino acids are not only precursors for these endogenous gases, but are also regulators of their production in a cell-specific manner. Thus, recent advances on gaseous signaling have greatly expanded our basic knowledge of amino acid biochemistry and nutrition. These exciting discoveries will aid in the design of new nutritional and pharmacological means to prevent and treat major health problems related to developmental biology and nutrient metabolism, including intrauterine growth restriction, preterm birth, aging, neurological disorders, cancer, obesity, diabetes, and cardiovascular disease.
Keywords: Gas; Metabolism; Nutrients; Signaling
Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation
by S. S. Palii; C. E. Kays; C. Deval; A. Bruhat; P. Fafournoux; M. S. Kilberg (pp. 79-88).
Amino acid deprivation activates the amino acid response (AAR) pathway that enhances transcription of genes containing an amino acid response element (AARE). The present data reveal a quantitative difference in the response to deprivation of individual amino acids. The AAR leads to increased eukaryotic initiation factor 2α (eIF2α) phosphorylation and ATF4 translation. When HepG2 cells were deprived of an individual essential amino acid, p-eIF2α and activating transcription factor 4 were increased, but the correlation was relatively weak. Complete amino acid starvation in either Earle’s balanced salt solution or Krebs–Ringer bicarbonate buffer (KRB) resulted in activation of transcription driven by a SNAT2 genomic fragment that contained an AARE. However, for the KRB, a proportion of the transcription was AARE-independent suggesting that amino acid-independent mechanisms were responsible. Therefore, activation of AARE-driven transcription is triggered by a deficiency in any one of the essential amino acids, but the response is not uniform. Furthermore, caution must be exercised when using a medium completely devoid of amino acids.
Keywords: SNAT2; System A; Nutrient starvation; Amino acid transport; ATF4; eIF2
Regulatory role for amino acids in mammary gland growth and milk synthesis
by Sung Woo Kim; Guoyao Wu (pp. 89-95).
The health and growth of mammalian neonates critically depend on the yield and composition of their mothers’ milk. However, impaired lactogenesis occurs in both women in response to stress and hormonal imbalance and in primiparous sows which exhibit low voluntary feed intake and underdevelopment of mammary tissues. Because of ethical concerns over lactation research with women and children, swine is often used as an animal model to study mammary gland development and the underlying regulatory mechanisms. Available evidence from work with lactating sows shows that amino acids are not only building blocks for protein but are also key regulators of metabolic pathways critical to milk production. Particularly, arginine is the common substrate for the generation of nitric oxide (NO; a major vasodilator and angiogenic factor) and polyamines (key regulators of protein synthesis). Thus, modulation of the arginine-NO pathway may provide a new strategy to enhance the growth (including vascular growth) of mammary tissue and its uptake of nutrients, therefore improving lactation performance in mammals. In support of this proposition, supplementing 0.83% L-arginine (as 1% l-arginine-HCl) or 50 mg/day diethylenetriamine-NO adduct (NO donor) to diets of lactating primiparous sows increased milk production and the growth of suckling piglets. Future studies with animal models (e.g., pigs, sheep, cows, and rats) are necessary to elucidate the underlying mechanisms at molecular, cellular, tissue, and whole-body levels.
Keywords: Amino acids; Arginine; Lactation; Milk; Neonates; Nitric oxide
Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs
by Agus Suryawan; Pamela M. J. O’Connor; Jill A. Bush; Hanh V. Nguyen; Teresa A. Davis (pp. 97-104).
The high efficiency of protein deposition during the neonatal period is driven by high rates of protein synthesis, which are maximally stimulated after feeding. In the current study, we examined the individual roles of amino acids and insulin in the regulation of protein synthesis in peripheral and visceral tissues of the neonate by performing pancreatic glucose–amino acid clamps in overnight-fasted 7-day-old pigs. We infused pigs (n = 8–12/group) with insulin at 0, 10, 22, and 110 ng kg−0.66 min−1 to achieve ~0, 2, 6 and 30 μU ml−1 insulin so as to simulate below fasting, fasting, intermediate, and fed insulin levels, respectively. At each insulin dose, amino acids were maintained at the fasting or fed level. In conjunction with the highest insulin dose, amino acids were also allowed to fall below the fasting level. Tissue protein synthesis was measured using a flooding dose of l-[4-3H] phenylalanine. Both insulin and amino acids increased fractional rates of protein synthesis in longissimus dorsi, gastrocnemius, masseter, and diaphragm muscles. Insulin, but not amino acids, increased protein synthesis in the skin. Amino acids, but not insulin, increased protein synthesis in the liver, pancreas, spleen, and lung and tended to increase protein synthesis in the jejunum and kidney. Neither insulin nor amino acids altered protein synthesis in the stomach. The results suggest that the stimulation of protein synthesis by feeding in most tissues of the neonate is regulated by the post-prandial rise in amino acids. However, the feeding-induced stimulation of protein synthesis in skeletal muscles is independently mediated by insulin as well as amino acids.
Keywords: Growth; Muscle; Liver; Newborn; Protein metabolism
Amino acids and gut function
by W. W. Wang; S. Y. Qiao; D. F. Li (pp. 105-110).
The intestine is not only critical for the absorption of nutrients, but also interacts with a complex external milieu. Most foreign antigens enter the body through the digestive tract. Dietary amino acids are major fuels for the small intestinal mucosa, as well as important substrates for syntheses of intestinal proteins, nitric oxide, polyamines, and other products with enormous biological importance. Recent studies support potential therapeutic roles for specific amino acids (including glutamine, glutamate, arginine, glycine, lysine, threonine, and sulfur-containing amino acids) in gut-related diseases. Results of these new lines of work indicate trophic and cytoprotective effects of amino acids on gut integrity, growth, and health in animals and humans.
Keywords: Amino acids; Gut; Intestinal mucosa; Metabolism; Inflammation
Glutamine, arginine, and leucine signaling in the intestine
by J. Marc Rhoads; Guoyao Wu (pp. 111-122).
Glutamine and leucine are abundant constituents of plant and animal proteins, whereas the content of arginine in foods and physiological fluids varies greatly. Besides their role in protein synthesis, these three amino acids individually activate signaling pathway to promote protein synthesis and possibly inhibit autophagy-mediated protein degradation in intestinal epithelial cells. In addition, glutamine and arginine stimulate the mitogen-activated protein kinase and mammalian target of rapamycin (mTOR)/p70 (s6) kinase pathways, respectively, to enhance mucosal cell migration and restitution. Moreover, through the nitric oxide-dependent cGMP signaling cascade, arginine regulates multiple physiological events in the intestine that are beneficial for cell homeostasis and survival. Available evidence from both in vitro and in vivo animal studies shows that glutamine and arginine promote cell proliferation and exert differential cytoprotective effects in response to nutrient deprivation, oxidative injury, stress, and immunological challenge. Additionally, when nitric oxide is available, leucine increases the migration of intestinal cells. Therefore, through cellular signaling mechanisms, arginine, glutamine, and leucine play crucial roles in intestinal growth, integrity, and function.
Keywords: Amino acids; Cellular signaling; Intestine; Nutrition
Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine
by Nick E. Flynn; Jared G. Bird; Aaron S. Guthrie (pp. 123-129).
Several factors (including diets, changes in intestinal fluora, and hormones) regulate postnatal intestinal growth and development. Based on the early studies involving modification of the adrenal gland, pituitary gland or hypothalamus, exogenous glucocorticoids and glucocorticoid receptor antagonists are now used to study glucocorticoid-mediated metabolism of amino acids in the small intestine. Findings from these studies indicate that physiological levels of glucocorticoids stimulate the catabolism of glutamine and proline for the synthesis of citrulline and arginine in enterocytes during weaning. In addition, increases in circulating levels of glucocorticoids enhance expression of arginase, proline oxidase and ornithine decarboxylase, as well as polyamine synthesis from arginine and proline in enterocytes. These actions of the hormones promote intestinal maturation and may have therapeutic effects on intestinal disease (e.g., necrotizing enterocolitis). Molecular aspects, species-specific effects, and developmental responsiveness to glucocorticoids should be taken into consideration in designing both experimental and clinical studies.
Keywords: Intestine; Glucocorticoid; Regulation; Development; Weaning
l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes
by Tony E. Haynes; Peng Li; Xilong Li; Kazuhiro Shimotori; Hiroyuki Sato; Nick E. Flynn; Junjun Wang; Darrell A. Knabe; Guoyao Wu (pp. 131-142).
This study tested the hypothesis that L-glutamine (Gln) or L-alanyl-L-glutamine (Ala-Gln) prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Enterocytes of neonatal pigs rapidly hydrolyzed Ala-Gln and utilized Gln. To determine whether Gln or Ala-Gln has a cytoprotective effect, IPEC-1 cells were cultured for 24 h in Gln-free Dulbecco’s modified Eagle’s-F12 Ham medium containing 0, 0.5, 2.0 or 5.0 mM Gln or Ala-Gln, and 0, 0.5 mM H2O2 or 30 ng/ml lipopolysaccharide (LPS). Without Gln or Ala-Gln, H2O2- or LPS-treated cells exhibited almost complete death. Gln or Ala-Gln at 0.5, 2 and 5 mM dose-dependently reduced H2O2- or LPS-induced cell death by 14, 54 and 95%, respectively, whereas d-glutamine, alanine, glutamate, ornithine, proline, glucosamine or nucleosides had no effect. To evaluate the effectiveness of Gln or Ala-Gln in vivo, 7-day-old piglets received one-week oral administration of Gln or Ala-Gln (3.42 mmol/kg body weight) twice daily and then a single intraperitoneal injection of LPS (0.1 mg/kg body weight); piglets were euthanized in 24 and 48 h to analyze intestinal apoptotic proteins and morphology. Administration of Gln or Ala-Gln to LPS-challenged piglets increased Gln concentrations in small-intestinal lumen and plasma, reduced intestinal expression of Toll-like receptor-4, active caspase-3 and NFkB, ameliorated intestinal injury, decreased rectal temperature, and enhanced growth performance. These results demonstrate a protective effect of Gln or Ala-Gln against H2O2- or LPS-induced enterocyte death. The findings support addition of Gln or Ala-Gln to current Gln-free pediatric amino acid solutions to prevent intestinal oxidative injury and inflammatory disease in neonates.
Keywords: Glutamine; Alanyl-glutamine; Endotoxin; Intestinal cells; Oxidative injury
Catabolism of nutritionally essential amino acids in developing porcine enterocytes
by Lixiang Chen; Peng Li; Junjun Wang; Xilong Li; Haijun Gao; Yulong Yin; Yongqing Hou; Guoyao Wu (pp. 143-152).
This study was conducted using the piglet model to test the hypothesis that mucosal cells of the neonatal small intestine can degrade nutritionally essential amino acids (EAA). Enterocytes were isolated from the jejunum of 0-, 7-, 14-, and 21-day-old pigs, and incubated for 45 min in Krebs buffer containing plasma concentrations of amino acids and one of the following L-[1-14C]- or L-[U-14C]-amino acids plus unlabeled tracees at 0.5, 2, or 5 mM: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine. In these cells, branched-chain amino acids (BCAA) were extensively transaminated and 15–50% of decarboxylated branched-chain α-ketoacids (BCKA) were oxidized to CO2 depending on the age of piglets. BCAA transamination increased but their decarboxylation decreased between 0 and 14 days of age. Addition of 1 and 2 mM α-ketoglutarate to incubation medium dose-dependently stimulated BCAA transamination without affecting their decarboxylation. Western blot analysis revealed that the abundance of mitochondrial BCAA aminotransferase declined but cytosolic BCAA aminotransferase increased between 0 and 14 days of age, with the cytosolic protein being the major isoform in 7- to 21-day-old pigs. BCKA dehydrogenase protein existed primarily as the phosphorylated (inactive) form in enterocytes of newborn pigs and its levels were markedly reduced in older pigs. All measured parameters of BCAA metabolism did not differ between 14- and 21-day-old pigs. In contrast to BCAA, catabolism of methionine and phenylalanine was negligible and that of other EAA was absent in enterocytes from all ages of piglets due to the lack of key enzymes. These results indicate that enterocytes are an important site for substantial degradation of BCAA but not other EAA in the neonatal gut.
Keywords: Amino acids; Catabolism; Enterocytes; Pigs
Arginine metabolism and nutrition in growth, health and disease
by Guoyao Wu; Fuller W. Bazer; Teresa A. Davis; Sung Woo Kim; Peng Li; J. Marc Rhoads; M. Carey Satterfield; Stephen B. Smith; Thomas E. Spencer; Yulong Yin (pp. 153-168).
l-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or l-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.
Keywords: Arginine; Disease; Health; Nutrition; Physiology
Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs
by Bie Tan; Yulong Yin; Zhiqiang Liu; Xinguo Li; Haijun Xu; Xiangfeng Kong; Ruilin Huang; Wenjie Tang; Izuru Shinzato; Stephen B. Smith; Guoyao Wu (pp. 169-175).
Obesity in humans is a major public health crisis worldwide. In addition, livestock species exhibit excessive subcutaneous fat at market weight. However, there are currently few means of reducing adiposity in mammals. This study was conducted with a swine model to test the hypothesis that dietary l-arginine supplementation may increase muscle gain and decrease fat deposition. Twenty-four 110-day-old barrows were assigned randomly into two treatments, representing supplementation with 1.0% l-arginine or 2.05% l-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Growth performance was measured based on weight gain and food intake. After a 60-day period of supplementation, carcass and muscle composition were measured. Serum triglyceride concentration was 20% lower (P < 0.01) but glucagon level was 36% greater (P < 0.05) in arginine-supplemented than in control pigs. Compared with the control, arginine supplementation increased (P < 0.05) body weight gain by 6.5% and carcass skeletal-muscle content by 5.5%, while decreasing (P < 0.01) carcass fat content by 11%. The arginine treatment enhanced (P < 0.05) longissimus dorsi muscle protein, glycogen, and fat contents by 4.8, 42, and 70%, respectively, as well as muscle pH at 45 min post-mortem by 0.32, while reducing muscle lactate content by 37%. These results support our hypothesis that dietary arginine supplementation beneficially promotes muscle gain and reduces body fat accretion in growing-finishing pigs. The findings have a positive impact on development of novel therapeutics to treat human obesity and enhance swine lean-tissue growth.
Keywords: Arginine; Growth; Muscle; Fat; Meat quality
Emerging technologies for amino acid nutrition research in the post-genome era
by Junjun Wang; Guoyao Wu; Huaijun Zhou; Fenglai Wang (pp. 177-186).
Amino acids (AA) are not only the building blocks of proteins but are also key regulators of metabolic pathways in cells. However, the mechanisms responsible for the effects of AA are largely unknown. With the completion of human and other mammalian genome projects, revolutionary technologies in life sciences characterized by high throughput, high efficiency, and rapid computation are now available for AA nutrition research. These advanced tools include genetics (the genomic variety), epigenetics (stable and heritable changes in gene expression or cellular phenotype that occurs without changes in DNA sequence), transcriptomics (alternative mRNA splicing, microRNAs, and gene transcription), proteomics (protein expression and interactions), metabolomics (metabolite profiles in cells and tissues), and bioinformatics (analysis of metabolic pathways using systems biology approach). These robust, powerful methods can be employed for the analysis of DNA, RNA, protein, and low-molecular-weight metabolites, whose expression and concentration are affected by the interaction between genes and dietary AA. With the omics and other advanced methodologies, we expect that the molecular actions of AA on target tissues can be defined and that optimal dietary recommendations for these nutrients can be devised for individual humans (personalized nutrition) and animals (targeted feeding) in response to changes in physiological and pathological conditions.
Keywords: Omics technology; Amino acid; Nutrition; Post-genome era
High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue
by Wenjuan Jobgen; Wenjiang J. Fu; Haijun Gao; Peng Li; Cynthia J. Meininger; Stephen B. Smith; Thomas E. Spencer; Guoyao Wu (pp. 187-198).
Dietary l-arginine (Arg) supplementation reduces white-fat gain in diet-induced obese rats but the underlying mechanisms are unknown. This study tested the hypothesis that Arg treatment affects expression of genes related to lipid metabolism in adipose tissue. Four-week-old male Sprague–Dawley rats were fed a low-fat (LF) or high-fat (HF) diet for 15 weeks. Thereafter, lean or obese rats continued to be fed their same respective diets and received drinking water containing 1.51% Arg–HCl or 2.55% l-alanine (isonitrogenous control). After 12 weeks of Arg supplementation, rats were euthanized to obtain retroperitoneal adipose tissue for analyzing global changes in gene expression by microarray. The results were confirmed by RT-PCR analysis. HF feeding decreased mRNA levels for lipogenic enzymes, AMP-activated protein kinase, glucose transporters, heme oxygenase 3, glutathione synthetase, superoxide dismutase 3, peroxiredoxin 5, glutathione peroxidase 3, and stress-induced protein, while increasing expression of carboxypeptidase-A, peroxisome proliferator activated receptor (PPAR)-α, caspase 2, caveolin 3, and diacylglycerol kinase. In contrast, Arg supplementation reduced mRNA levels for fatty acid binding protein 1, glycogenin, protein phosphates 1B, caspases 1 and 2, and hepatic lipase, but increased expression of PPARγ, heme oxygenase 3, glutathione synthetase, insulin-like growth factor II, sphingosine-1-phosphate receptor, and stress-induced protein. Biochemical analysis revealed oxidative stress in white adipose tissue of HF-fed rats, which was prevented by Arg supplementation. Collectively, these results indicate that HF diet and Arg supplementation differentially regulate gene expression to affect energy-substrate oxidation, redox state, fat accretion, and adipocyte differentiation in adipose tissue. Our findings provide a molecular mechanism to explain a beneficial effect of Arg on ameliorating diet-induced obesity in mammals.
Keywords: Arginine; Fat; Genes; Microarray; Obesity
Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation
by Qinghua He; Xiangfeng Kong; Guoyao Wu; Pingping Ren; Huiru Tang; Fuhua Hao; Ruilin Huang; Tiejun Li; Bie Tan; Peng Li; Zhiru Tang; Yulong Yin; Yongning Wu (pp. 199-208).
Arginine plays an important role regulating nutrient metabolism, but the underlying mechanisms are largely unknown. This study was conducted to determine the effect of dietary arginine supplementation on the metabolome in serum of growing pigs using 1H nuclear magnetic resonance spectroscopy. Sixteen 120-day-old pigs (48 ± 1 kg) were randomly assigned to one of two groups, representing supplementation with 0 or 1.0% l-arginine to corn- and soybean meal-based diets. Serum was collected after a 46-day period of treatment. Dietary arginine supplementation decreased fat deposition and increased protein accretion in the body. Principal component analysis showed that serum concentrations of low density lipoprotein, very low density lipoprotein, and urea were lower, but concentrations of creatinine, tricarboxylic acid cycle metabolites, ornithine, lysine and tyrosine were greater in arginine-supplemented than in control pigs. Additionally, the arginine treatment affected serum concentrations of nitrogenous and lipid signaling molecules (glycerophosphorylcholine and myo-inositol) and intestinal bacterial metabolites (formate, ethanol, methylamine, dimethylamine, acetate, and propionate). These novel findings suggest that dietary arginine supplementation alters the catabolism of fat and amino acids in the whole body, enhances protein synthesis in skeletal muscle, and modulates intestinal microbial metabolism in growing pigs.
Keywords: Arginine; Metabolomics; Serum; Pigs; Nuclear magnetic resonance spectroscopy
Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets
by Xiaoqiu Wang; Deyuan Ou; Jingdong Yin; Guoyao Wu; Junjun Wang (pp. 209-218).
Zinc is an important dietary factor that regulates intestinal amino acid and protein metabolism in animals. Recent work with the piglet, an established animal model for studying human infant nutrition, has shown that supplementing high levels of zinc oxide (ZnO) to the diet ameliorates weaning-associated intestinal injury and growth retardation. However, the underlying mechanisms are largely unknown. This study tested the hypothesis that zinc supplementation affects expression of proteins related to glutathione metabolism and oxidative stress in the gut. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 22 up-regulated and 19 down-regulated protein spots in the jejunum of weanling piglets supplemented with ZnO (3,000 mg/kg Zn) compared with the control pigs (100 mg/kg Zn). These proteins are related to energy metabolism (increased level for succinyl-CoA transferase and decreased level for creatine kinase M-type); oxidative stress (decreased levels for 78 kDa glucose-regulated protein and glutathione-S-transferase-ω); and cell proliferation and apoptosis (increased levels for A-Raf-1 and calregulin). Consistent with the changes in protein expression, the ratio of reduced glutathione to oxidized glutathione was increased, whereas glutathione-S-transferase and glutathione peroxidase activities as well as the protein level of active caspase-3 were reduced in ZnO-supplemented piglets. Collectively, these results indicate that ZnO supplementation improves the redox state and prevents apoptosis in the jejunum of weaning piglets, thereby alleviating weaning-associated intestinal dysfunction and malabsorption of nutrients (including amino acids).
Keywords: Apoptosis; Small intestine; Proteomics; Redox; ZnO
|
|