Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

Applied Microbiology and Biotechnology (v.76, #3)

Dedication to Professor Dr. Hermann Sahm on the occasion of his 65th birthday by Alexander Steinbüchel; Michael Bott; Bernhard Eikmanns (pp. 483-484).

Challenges in microbial fuel cell development and operation by Byung Hong Kim; In Seop Chang; Geoffrey M. Gadd (pp. 485-494).
A microbial fuel cell (MFC) is a device that converts chemical energy into electricity through the catalytic activities of microorganisms. Although there is great potential of MFCs as an alternative energy source, novel wastewater treatment process, and biosensor for oxygen and pollutants, extensive optimization is required to exploit the maximum microbial potential. In this article, the main limiting factors of MFC operation are identified and suggestions are made to improve performance.

Keywords: Microbial fuel cell; Bioenergy; Renewable energy


Metabolomics: current state and evolving methodologies and tools by Marco Oldiges; Stephan Lütz; Simon Pflug; Kirsten Schroer; Nadine Stein; Christiane Wiendahl (pp. 495-511).
In recent years, metabolomics developed to an accepted and valuable tool in life sciences. Substantial improvements of analytical hardware allow metabolomics to run routinely now. Data are successfully used to investigate genotype–phenotype relations of strains and mutants. Metabolomics facilitates metabolic engineering to optimise mircoorganisms for white biotechnology and spreads to the investigation of biotransformations and cell culture. Metabolomics serves not only as a source of qualitative but also quantitative data of intra-cellular metabolites essential for the model-based description of the metabolic network operating under in vivo conditions. To collect reliable metabolome data sets, culture and sampling conditions, as well as the cells’ metabolic state, are crucial. Hence, application of biochemical engineering principles and method standardisation efforts become important. Together with the other more established omics technologies, metabolomics will strengthen its claim to contribute to the detailed understanding of the in vivo function of gene products, biochemical and regulatory networks and, even more ambitious, the mathematical description and simulation of the whole cell in the systems biology approach. This knowledge will allow the construction of designer organisms for process application using biotransformation and fermentative approaches making effective use of single enzymes, whole microbial and even higher cells.

Keywords: Metabolomics; Metabolome; Microbial; LC-MS; GC-MS; Mass spectrometry


Application of bacteriophages for detection and control of foodborne pathogens by Steven Hagens; Martin J. Loessner (pp. 513-519).
The incidence of foodborne infectious diseases is stable or has even increased in many countries. Consequently, our awareness regarding hygiene measures in food production has also increased dramatically over the last decades. However, even today’s modern production techniques and intensive food-monitoring programs have not been able to effectively control the problem. At the same time, increased production volumes are distributed to more consumers, and if contaminated, potentially cause mass epidemics. Accordingly, research directed to improve food safety has also been taken forward, also exploring novel methods and technologies. Such an approach is represented by the use of bacteriophage for specific killing of unwanted bacteria. The extreme specificity of phages renders them ideal candidates for applications designed to increase food safety during the production process. Phages are the natural enemies of bacteria, and can be used for biocontrol of bacteria without interfering with the natural microflora or the cultures in fermented products. Moreover, phages or phage-derived proteins can also be used to detect the presence of unwanted pathogens in food or the production environments, which allows quick and specific identification of viable cells. This review intends to briefly summarize and explain the principles and current standing of these approaches.

Keywords: Bacteriophage; Pathogens; Listeria; Salmonella; E. coli; Mycobacterium


Engineering cell physiology to enhance recombinant protein production in Escherichia coli by C. Perry Chou (pp. 521-532).
The advent of recombinant DNA technology has revolutionized the strategies for protein production. Due to the well-characterized genome and a variety of mature tools available for genetic manipulation, Escherichia coli is still the most common workhorse for recombinant protein production. However, the culture for industrial applications often presents E. coli cells with a growth condition that is significantly different from their natural inhabiting environment in the gastrointestinal tract, resulting in deterioration in cell physiology and limitation in cell’s productivity. It has been recognized that innovative design of genetically engineered strains can highly increase the bioprocess yield with minimum investment on the capital and operating costs. Nevertheless, most of these genetic manipulations, by which traits are implanted into the workhorse through recombinant DNA technology, for enhancing recombinant protein productivity often translate into the challenges that deteriorate cell physiology or even jeopardize cell survival. An in-depth understanding of these challenges and their corresponding cellular response at the molecular level becomes crucial for developing superior strains that are more physiologically adaptive to the production environment to improve culture productivity. With the accumulated knowledge in cell physiology, whose importance to gene overexpression was to some extent undervalued previously, this review is intended to focus on the recent biotechnological advancement in engineering cell physiology to enhance recombinant protein production in E. coli.

Keywords: Cell physiology; Escherichia coli ; Gene expression; Heat shock; Physiological stress; Recombinant protein; Stress response


Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation by Anders R. Johnsen; Ulrich Karlson (pp. 533-543).
The purpose of this review is to recognize the scientific and environmental importance of diffuse pollution with polycyclic aromatic hydrocarbons (PAHs). Diffuse PAH pollution of surface soil is characterized by large area extents, low PAH concentrations, and the lack of point sources. Urban and pristine topsoils receive a continuous input of pyrogenic PAHs, which induces a microbial potential for PAH degradation. The significance of this potential in relation to black carbon particles, PAH bioaccessibility, microbial PAH degradation, and the fate of diffuse PAHs in soil is discussed. Finally, the state-of-the-art methods for future investigations of the microbial degradation of diffuse PAH pollution are reviewed.

Keywords: Polycyclic aromatic hydrocarbon (PAH); Diffuse pollution; Soil; Bioaccessibility; Biodegradation; Black carbon


Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum by Carsten Bäumchen; Stephanie Bringer-Meyer (pp. 545-552).
A recombinant oxidation/reduction cycle for the conversion of D-fructose to D-mannitol was established in resting cells of Corynebacterium glutamicum. Whole cells were used as biocatalysts, supplied with 250 mM sodium formate and 500 mM D-fructose at pH 6.5. The mannitol dehydrogenase gene (mdh) from Leuconostoc pseudomesenteroides was overexpressed in strain C. glutamicum ATCC 13032. To ensure sufficient cofactor [nicotinamide adenine dinucleotide (reduced form, NADH)] supply, the fdh gene encoding formate dehydrogenase from Mycobacterium vaccae N10 was coexpressed. The recombinant C. glutamicum cells produced D-mannitol at a constant production rate of 0.22 g (g cdw)−1 h−1. Expression of the glucose/fructose facilitator gene glf from Zymomonas mobilis in C. glutamicum led to a 5.5-fold increased productivity of 1.25 g (g cdw)−1 h−1, yielding 87 g l−1 D-mannitol from 93.7 g l−1 D-fructose. Determination of intracellular NAD(H) concentration during biotransformation showed a constant NAD(H) pool size and a NADH/NAD+ ratio of approximately 1. In repetitive fed-batch biotransformation, 285 g l−1 D-mannitol over a time period of 96 h with an average productivity of 1.0 g (g cdw)−1 h−1 was formed. These results show that C. glutamicum is a favorable biocatalyst for long-term biotransformation with resting cells.

Keywords: Whole cell biotransformation; NADH regeneration; Corynebacterium glutamicum ATCC13032; D-Mannitol


Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343 by Cornelia Gätgens; Ursula Degner; Stephanie Bringer-Meyer; Ute Herrmann (pp. 553-559).
The genus Gluconobacter is well known for its rapid and incomplete oxidation of a wide range of substrates. Therefore, Gluconobacter oxydans especially is used for several biotechnological applications, e.g., the efficient oxidation of glycerol to dihydroxyacetone (DHA). For this reaction, G. oxydans is equipped with a membrane-bound glycerol dehydrogenase that is also described to oxidize sorbitol, gluconate, and arabitol. Here, we demonstrated the impact of sldAB overexpression on glycerol oxidation: Beside a beneficial effect on the transcript level of the sldB gene, the growth on glycerol as a carbon source was significantly improved in the overexpression strains (OD 2.8 to 2.9) compared to the control strains (OD 2.8 to 2.9). Furthermore, the DHA formation rate, as well as the final DHA concentration, was affected so that up to 350 mM of DHA was accumulated by the overexpression strains when 550 mM glycerol was supplied (control strain: 200 to 280 mM DHA). Finally, we investigated the effect on sldAB overexpression on the G. oxydans transcriptome and identified two genes involved in glycerol metabolism, as well as a regulator of the LysR family.

Keywords: Gluconobacter oxydans ; Glycerol; Dihydroxyacetone; Glycerol dehydrogenase; Sorbitol dehydrogenase


Effect of electron mediators on current generation and fermentation in a microbial fuel cell by Christian J. Sund; Sun McMasters; Scott R. Crittenden; Lee E. Harrell; James J. Sumner (pp. 561-568).
Effects of select electron mediators [9,10-anthraquinone-2,6-disulfonic acid disodium salt (AQDS), safranine O, resazurin, methylene blue, and humic acids] on metabolic end-products and current production from cellulose digestion by Clostridium cellulolyticum in microbial fuel cells (MFCs) were studied using capillary electrophoresis and traditional electrochemical techniques. Addition of the mediator resazurin greatly enhanced current production but did not appear to alter the examined fermentation end-products compared to MFCs with no mediator. Assays for lactate, acetate, and ethanol indicate that the presence of safranine O, methylene blue, and humic acids alters metabolite production in the MFC: safranine O decreased the examined metabolites, methylene blue increased lactate formation, and humic acids increased the examined metabolites. Mediator standard redox potentials (E 0) reported in the literature do not coincide with redox potentials in MFCs due presumably to the electrolytic complexity of media that supports bacterial survival and growth. Current production in MFCs: (1) can be effected by the mediator redox potential while in the media, which may be significantly shifted from E 0, and (2) depended on the ability of the mediator to access the bacterial electron source, which may be cytoplasmic. In addition, some electron mediators had significant effects on metabolic end-products and therefore the metabolism of the organism itself.

Keywords: C. cellulolyticum ; Cellulose; Microbial fuel cell


Growth stress triggers riboflavin overproduction in Ashbya gossypii by Thomas Schlösser; Andreas Wiesenburg; Cornelia Gätgens; Andreas Funke; Ulrike Viets; Swaminathan Vijayalakshmi; Susanne Nieland; K.-Peter Stahmann (pp. 569-578).
The filamentous fungus Ashbya gossypii is used for riboflavin biosynthesis on an industrial scale, but even the wild type displays overproduction. Because riboflavin overproduction was known to start at the transition between growth and stationary phase, it was suspected that overproduction was induced at low growth rates. However, chemostatic cultivations performed at different growth rates did not result in any detectable riboflavin formation. In this study, we report that it was not the final growth rate that triggered riboflavin overproduction but a decline in growth rate. Therefore, continuous fermenter cultivations with dilution rate shifts were performed. Peaks of riboflavin overproduction were observed in the wild type and in a RIB3placZ reporter strain after downshifts in dilution rate. Accumulation of riboflavin correlated with an increased expression of lacZ reporter activity. The step size of the downshifts corresponded to the peak size of riboflavin formation and reporter activity. Expression of further RIB genes encoding riboflavin biosynthetic enzymes was analyzed by RT-PCR. RIB mRNA levels of the ribulose-5-phosphate branch of the divided riboflavin biosynthesis pathway (RIB3, RIB4, and RIB5) were found to increase in the riboflavin production phase, whereas the RIB2 and RIB7 mRNA levels belonging to the GTP branch remained constant. We propose that a decline in growth rate triggers the increased expression of RIB3, RIB4, and RIB5 resulting in riboflavin overproduction. Because although a reduction in oxygen supply, temperature increase or decrease, or salt stress did affect growth, but neither did lead to riboflavin overproduction nor did induce RIB3 reporter expression, we conclude that declining nutrition must be the stress stimulus. Because about half of the cells in the hyphae of Ashbya gossypii did not accumulate riboflavin, the regulatory response on the cellular level can be estimated to be at least twice as great in comparison to what we detected as overall signals.

Keywords: Riboflavin; Regulation; Stress; Ashbya gossypii ; Fungi


De novo synthesis, constitutive expression of Aspergillus sulphureus β-xylanase gene in Pichia pastoris and partial enzymic characterization by Yunhe Cao; Jiayun Qiao; Yihang Li; Wenqing Lu (pp. 579-585).
The endo-β-1, 4-xylanase gene xynA from Aspergillus sulphureus, encoded a lack-of-signal peptide protein of 184 amino acids, was de novo synthesized by splicing overlap extension polymerase chain reaction according to Pichia pastoris protein’s codon bias. The synthetic DNA, composed of 572 nucleotides, was ligated into the downstream sequence of an α-mating factor in a constitutive expression vector pGAPzαA and electrotransformed into the P. pastoris X-33 strain. The transformed yeast screened by Zeocin was able to constitutively secrete the xylanase in yeast–peptone–dextrose liquid medium. The heterogenous DNA was stabilized in the strain by 20-times passage culture. The recombinant enzyme was expressed with a yield of 120 units/mL under the flask culture at 28°C for 3 days. The enzyme showed optimal activity at 50°C and pH 2.4–3.4. Residual activity of the raw recombinant xylanase was not less than 70% when fermentation broth was directly heated at 80°C for 30 min. However, the dialyzed xylanase supernatant completely lost the catalytic activity after being heated at 60°C for 30 min. The recombinant xylanase showed no obvious activity alteration by being pretreated with Na2HPO4-citric acid buffer of pH 2.4 for 2 h. The xylanase also showed resistance to certain metal ions (Na+, Mg2+, Ca2+, K+, Ba2+, Zn2+, Fe2+, and Mn2+) and EDTA. These biochemical characteristics suggest that the recombinant xylanase has a prospective application in feed industry as an additive.

Keywords: Endo-β-1, 4-xylanase; Aspergillus sulphureus ; De novo synthesis; Pichia pastoris ; Constitutive expression


The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of l-lysine synthesis by Eva Radmacher; Lothar Eggeling (pp. 587-595).
Corynebacterium glutamicum owns a citrate synthase and two methylcitrate synthases. Characterization of the isolated enzymes showed that the two methylcitrate synthases have comparable catalytic efficiency, k cat/K m, as the citrate synthase with acetyl-CoA as substrate, although these enzymes are only synthesized during growth on propionate-containing media. Thus, the methylcitrate synthases have a relaxed substrate specifity, as also demonstrated by their activity with butyryl-CoA, whereas the citrate synthase does not accept acyl donors other than acetyl-CoA. A double mutant deleted of the citrate synthase gene gltA and one of the methylcitrate synthase genes, prpC1, was made unable to grow on glucose. From this mutant, a collection of suppressor mutants could be isolated which were demonstrated to have regained citrate synthase activity due to the relaxed specificity of the methylcitrate synthase PrpC2. Molecular characterization of these mutants showed that the regulator PrpR (Cg0800) located downstream of prpC1 is mutated with mutations likely to effect the secondary structure of the regulator, thus, resulting in expression of prpC2. This expression results in a citrate synthase activity, which is lower than that due to gltA in the original strain and results in increased l-lysine accumulation.

Keywords: Citrate synthase; Methylcitrate synthase; MerR-type regulator; Regulator mutations; l-lysine production


Modelling the reaction course of N-acetylneuraminic acid synthesis from N-acetyl-d-glucosamine—new strategies for the optimisation of neuraminic acid synthesis by Vera Zimmermann; Hans-Georg Hennemann; Thomas Daußmann; Udo Kragl (pp. 597-605).
In this work, a model describing the complete enzyme catalysed synthesis of N-acetylneuraminic acid (Neu5Ac) from N-acetyl-d-glucosamine (GlcNAc) is presented. It includes the combined reaction steps of epimerisation from GlcNAc to N-acetyl-d-mannosamine (ManNAc) and the aldol condensation of ManNAc with sodium pyruvate yielding Neu5Ac. The model is expedient to predict the reaction course for various initial and feed concentrations and therefore to calculate reaction times and yields. The equilibrium constants calculated from the kinetic constants via the Haldane relationship correspond with experimental values very well (0.26 calculated and 0.24 experimental value for the epimerisation, 27.4 l mol−1 calculated and 28.7 l mol−1 experimental for the aldol condensation). The actual relevance of the model is shown by a scale-up. Using the model, an optimisation of reaction conditions in consideration of different targets is possible. Exemplarily, it is presented how the optimal ratio of the two enzymes in the reaction can be determined and how the composition of the reaction solution in a fed-batch reactor can be designed to meet downstream processing needs.

Purification of recombinant aprotinin from transgenic corn germ fraction using ion exchange and hydrophobic interaction chromatography by Qixin Zhong; Li Xu; Cheng Zhang; Charles E. Glatz (pp. 607-613).
Plants have attracted interest as hosts for protein expression because of the promise of a large production capacity and a low production cost. However, recovery costs remain a challenge as illustrated for recovery of recombinant aprotinin, a trypsin inhibitor, with removal of native corn trypsin inhibitor from transgenic corn (Azzoni et al. in Biotechnol Bioeng 80:268–276, 2002). When expression is targeted to corn grain fractions, dry milling can separate germ and endosperm fractions. Hence, only the product-containing fraction needs to be extracted, reducing the cost of extraction and the impurity level of the extract. Selective extraction conditions can reduce impurity levels to the point that low-cost adsorbents can result in relatively high purity levels. In this work, we attempted to achieve comparable purity with these lower cost methods. We replaced whole grain extraction and purification of recombinant aprotinin with sequential trypsin affinity and IMAC steps with an alternative of germ fraction extraction and purification with ion exchange and hydrophobic interaction chromatography (HIC). Using germ extraction at acidic pH supplemented with heat precipitation to remove additional host proteins resulted in a higher specific activity feed to the chromatographic steps. The cation exchange step provided 7.6× purification with 76.4% yield and no sodium dodecyl sulfate–polyacrylamide gel electrophoresis detectable native corn trypsin inhibitor. After the HIC step (2.7× step purification with 44.0% yield), the final product had a specific activity that was 75.3% of that of the affinity-purified aprotinin.

Keywords: Recombinant protein; Aprotinin; Transgenic corn; Germ; Recovery; Extraction; Ion exchange; Hydrophobic interaction chromatography


Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum by Bastian Blombach; Mark E. Schreiner; Matthias Moch; Marco Oldiges; Bernhard J. Eikmanns (pp. 615-623).
Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on l-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the l-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and l-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific l-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific l-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific l-lysine yield by 6 and 56%, respectively. In addition to l-lysine, significant amounts of pyruvate, l-alanine and l-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve l-lysine production by engineering the l-lysine biosynthetic pathway.

Keywords: Corynebacterium glutamicum ; l-lysine; Pyruvate dehydrogenase complex; l-lysine production


FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum by Eva Hänßler; Tim Müller; Nadja Jeßberger; Anja Völzke; Jens Plassmeier; Jörn Kalinowski; Reinhard Krämer; Andreas Burkovski (pp. 625-632).
With the publication of the Corynebacterium glutamicum genome sequence, a global characterization of genes controlled by functionally uncharacterized transcriptional regulators became possible. We used DNA microarrays in combination with gel retardation experiments to study gene regulation by FarR, a HutC/FarR-type regulator of the GntR family. Based on our results, FarR seems to be involved in the regulation of amino acid biosynthesis in C. glutamicum. Especially, transcript levels of the arg cluster and the gdh gene are influenced by deletion of farR.

Keywords: Arginine; Corynebacterium ; Glutamate dehydrogenase


Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria by Daniel Meissner; Angela Vollstedt; Jan Maarten van Dijl; Roland Freudl (pp. 633-642).
In contrast to the general protein secretion (Sec) system, the twin-arginine translocation (Tat) export pathway allows the translocation of proteins across the bacterial plasma membrane in a fully folded conformation. Due to this feature, the Tat pathway provides an attractive alternative to the secretory production of heterologous proteins via the Sec system. In this study, the potential for Tat-dependent heterologous protein secretion was compared in the three Gram-positive bacteria Staphylococcus carnosus, Bacillus subtilis, and Corynebacterium glutamicum using green fluorescent protein (GFP) as a model protein. In all three microorganisms, fusion of a Tat signal peptide to GFP resulted in its Tat-dependent translocation across the corresponding cytoplasmic membranes. However, striking differences with respect to the final localization and folding status of the exported GFP were observed. In S. carnosus, GFP was trapped entirely in the cell wall and not released into the supernatant. In B. subtilis, GFP was secreted into the supernatant, however, in an inactive form. In contrast, C. glutamicum effectively secreted active GFP. Our results clearly demonstrate that a comparative evaluation of different Gram-positive host microorganisms is a crucial step on the way to an efficient Tat-mediated secretory production process for a desired heterologous target protein.

Keywords: Twin arginine translocation; Protein secretion; Green fluorescent protein; Gram-positive


Construction of a new food-grade expression system for Bacillus subtilis based on theta replication plasmids and auxotrophic complementation by Yu Xia; Wei Chen; Jianxin Zhao; Fengwei Tian; Hao Zhang; Xiaolin Ding (pp. 643-650).
A new food-grade expression system was constructed for Bacillus subtilis based on replicative food-grade expression plasmids and auxotrophic complementation. The food-grade B. subtilis host FG01 was created by knockout of the dal locus from the chromosome of B. subtilis 168. Two food-grade expression plasmids pXFGT03 and pXFGT05 were constructed by combining a novel theta-type Bacillus replicon with the B. subtilis endogenous gene dal and P43 promoter; while pXFGT05 was derived from pXFGT03 by deletion of two open reading frames (ORFs) from the original replicon. Upon transformation of FG01 with pXFGT03 or pXFGT05, the host phenotype was complemented on Luria–Bertani agar plates by the plasmid-coded dal gene, which served as a food-grade selection marker for recombinants. Results showed that deletion of the two ORFs had no impact on plasmid replication. A reporter gene bgaB was cloned into pXFGT03 and pXFGT05, respectively, under control of the P43 promoter, and it was successfully expressed in this food-grade expression system. Segregational stabilities of two recombinant plasmids were investigated, and they were fully stable.

Keywords: Bacillus subtilis ; Food-grade; Expression system


Increased expression of transgene in stably transformed cells of Dunaliella salina by matrix attachment regions by Tianyun Wang; Lexun Xue; Weihong Hou; Baosheng Yang; Yurong Chai; Xiang Ji; Yafeng Wang (pp. 651-657).
Nuclear matrix attachment regions (MARs) are known to bind specifically to the nuclear scaffold and are thought to influence expression of the transgenes. In our previous studies, a new deoxyribonucleic acid fragment isolated from Dunaliella salina could bind to the nuclear matrix in vitro and had the typical characteristics of MARs. In this study, to investigate effects of MARs on expression of transgenes in the stably transformed cells of D. salina, expression vectors with and without MARs, which contained chloramphenicol acetyltransferase (CAT) reporter gene driven by D. salina ribulose 1,5-bisphosphate carboxylase/oxygenase promoter, were constructed and delivered, respectively, into cells of D. salina by electroporation. Twenty stably transformed colonies of D. salina were randomly picked out, and CAT gene expression was assayed. The results showed that the CAT enzyme of the colonies of D. salina transformed with the expression vector containing MARs averaged out about 4.5-fold higher than those without MARs, while the transgene expression variation among individuals of transformants decreased threefold. The CAT enzyme in the stably transformed lines was not significantly proportional to the gene copy numbers, suggesting that the effects of MARs on transgene expression may not be through increasing the transgene copy numbers.

Keywords: Chloramphenicol acetyltransferase; Dunaliella salina ; Matrix attachment region; Transgene expression


Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44) by Sung Hyun Kim; Gyun Min Lee (pp. 659-665).
To investigate the effect of human pyruvate carboxylase (hPC) on lactate formation in Chinese hamster ovary (CHO) cell lines, FLAG-tagged hPC was introduced into a dihydrofolate-deficient CHO cell line (DG44). Three clones expressing high levels of hPC, determined by Western blotting using an anti-FLAG monoclonal antibody, and a control cell line were established. Immunocytochemistry revealed that a substantial amount of expressed hPC protein was localized in the mitochondria of the cells. hPC expression did not impair cell proliferation. Rather, it improved cell viability at the end of adherent batch cultures with the serum-containing medium probably because of reduced lactate formation. Compared with control cells, specific lactate production rate of the three clones was decreased by 21–39%, which was because of a decreased specific glucose uptake rate and yield of lactate from glucose. Reduced lactate formation by hPC expression was also observed in suspension fed-batch cultures using a serum-free medium. Taken together, these results demonstrate that through the expression of the hPC enzyme, lactate formation in CHO cell culture can be efficiently reduced.

Keywords: Chinese hamster ovary (CHO) cells; Human pyruvate carboxylase (hPC); Specific lactate production rate


Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis by María Martín; Jorge Gutiérrez; Raquel Criado; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández (pp. 667-675).
Replacement of the leader sequence of enterocin A (EntA), a bacteriocin produced by Enterococcus faecium PLBC21, by the signal peptide of enterocin P (EntP), a sec-dependent bacteriocin produced by E. faecium P13, permitted production of EntA in Lactococcus lactis. Chimeras encoding the EntP signal peptide (SP entP ) fused to mature EntA (entA), with or without its immunity gene (entiA), were cloned into the expression vector pMG36c to generate the recombinant plasmids, pMPA15 (SP entP :entA) and pMPA10i (SP entP :entA + entiA). Transformation of competent L. lactis subsp. lactis IL1403 and L. lactis subsp. cremoris NZ9000 with the recombinant plasmids permitted production of EntA by the transformed cells, and the co-production of nisin A and EntA by the L. lactis subsp. lactis DPC5598 transformants. Mature EntA fused to SPEntP is the minimum requirement for synthesis, processing and secretion of biologically active EntA in L. lactis. The production of EntA by most recombinant L. lactis hosts was larger than in the E. faecium control strains. All L. lactis derivatives showed antimicrobial activity against Listeria spp., and L. lactis (pMPA15) displayed the highest antilisterial effect.

Keywords: Bacteriocins; Enterocins A; Heterologous production; Sec-dependent secretion; Enterococcus faecium ; Lactococcus lactis


Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes by Georg Sindelar; Volker F. Wendisch (pp. 677-689).
For the biotechnological production of l-lysine, mainly strains of Corynebacterium glutamicum are used, which have been obtained by classical mutagenesis and screening or selection or by metabolic engineering. Gene targets for the amplification and deregulation of the lysine biosynthesis pathway, for the improvement of carbon precursor supply and of nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) regeneration, are known. To identify novel target genes to improve lysine production, the transcriptomes of the classically obtained lysine producing strain MH20-22B and several other C. glutamicum strains were compared. As lysine production by the classically obtained strain, which possesses feedback-resistant aspartokinase and is leucine auxotrophic, exceeds that of a genetically defined leucine auxotrophic wild-type derivative possessing feedback-resistant aspartokinase, additional traits beneficial for lysine production are present. NCgl0855, putatively encoding a methyltransferase, and the amtA-ocd-soxA operon, encoding an ammonium uptake system, a putative ornithine cyclodeaminase and an uncharacterized enzyme, were among the genes showing increased expression in the classically obtained strain irrespective of the presence of feedback-resistant aspartokinase. Lysine production could be improved by about 40% through overexpression of NCgl0855 or the amtA-ocd-soxA operon. Thus, novel target genes for the improvement of lysine production could be identified in a discovery-driven approach based on global gene expression analysis.

Keywords: Corynebacterium glutamicum; L-lysine production; DNA microarrays; Transcriptomics; Strain development


Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG by Christian Schultz; Axel Niebisch; Lena Gebel; Michael Bott (pp. 691-700).
We recently showed that the activity of the 2-oxoglutarate dehydrogenase complex (ODHC) in Corynebacterium glutamicum is controlled by a novel regulatory mechanism that involves a 15-kDa protein called OdhI and serine/threonine protein kinase G (PknG). In its unphosphorylated state, OdhI binds to the E1 subunit (OdhA) of ODHC and, thereby, inhibits its activity. Inhibition is relieved by phosphorylation of OdhI at threonine-14 by PknG under conditions requiring high ODHC activity. In this work, evidence is provided that the dephosphorylation of phosphorylated OdhI is catalyzed by a phospho-Ser/Thr protein phosphatase encoded by the gene cg0062, designated ppp. As a decreased ODHC activity is important for glutamate synthesis, we investigated the role of OdhI and PknG for glutamate production under biotin limitation and after addition of Tween-40, penicillin, or ethambutol. A ΔodhI mutant formed only 1–13% of the glutamate synthesized by the wild type. Thus, OdhI is essential for efficient glutamate production. The effect of a pknG deletion on glutamate synthesis was dependent on the induction conditions. Under strong biotin limitation and in the presence of ethambutol, the ΔpknG mutant showed significantly increased glutamate production, offering a new way to improve production strains.

Keywords: Corynebacterium glutamicum ; Glutamate; OdhI; 2-Oxoglutarate dehydrogenase; Oxoglutarate dehydrogenase inhibitor; PknG; Serine/threonine protein kinase


Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum by Martin Weinand; Reinhard Krämer; Susanne Morbach (pp. 701-708).
The soil bacterium Corynebacterium glutamicum is efficiently protected against hyperosmotic stress by a high redundancy of uptake systems and biosynthesis pathways for compatible solutes. We have previously identified and analyzed four osmoregulated uptake systems for betaine, ectoine, and proline. Because of overlapping substrate specificities, it is not possible to quantify their individual contribution to the stress response in wild-type cells. Using a set of strains in which only one uptake system for compatible solutes is present, we investigated the expression regulation at their transcriptional and translational level. The carrier ectP was found to be regulated at the level of transcription, but the already high maximal uptake capacity of approx. 30 nmol/(min mg cell dry mass, cdm) was not further elevated if the medium osmolality was severely increased, indicating that the amount of EctP is not changed. Thus, EctP may represent the rescue system for C. glutamicum. The betP, lcoP, and proP genes were induced upon hyperosmotic conditions, resulting in a 3–10-fold increase of their transport activity. These systems are thus used to fine-tune the uptake capacity for compatible solutes to the actual demands of the cell. ProP represents the most strongly regulated compatible solute uptake system in C. glutamicum.

Keywords: Corynebacterium glutamicum ; Uptake systems for compatible solutes; Expression regulation; Translation regulation


Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3 by Aristeidis Kallimanis; Stathis Frillingos; Constantin Drainas; Anna Irini Koukkou (pp. 709-717).
This report describes phenanthrene uptake as well as the effect of phenanthrene on the membrane phospholipid and fatty acid composition in a newly isolated bacterial strain, Sphe3, that we taxonomically identified as Arthrobacter sp. Strain Sphe3 is able to utilize phenanthrene as a carbon source at high rates and appears to internalize phenanthrene with two mechanisms: a passive diffusion when cells are grown on glucose, and an inducible active transport system when cells are grown on phenanthrene as a sole carbon source. Active transport followed Michaelis-Menten kinetics, and it was amenable to inhibition by 2,4-dinitrophenol and sodium azide. Evidence provided here indicates that apart from inducing an active PAH uptake, the presence of phenanthrene elicits significant changes in membrane fluidity.

Keywords: Biodegradation; Arthrobacter ; Phenanthrene uptake; Membrane adaptation; Soil bacteria


Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions by Meiying Xu; Jun Guo; Guoping Sun (pp. 719-726).
The complete biodegradation of azo dye, Fast Acid Red GR, was observed under microaerophilic conditions by Shewanella decolorationis S12. Although the highest decolorizing rate was measured under anaerobic condition and the highest biomass was obtained under aerobic condition, a further biodegradation of decolorizing products can only be achieved under microaerophilic conditions. Under microaerophilic conditions, S. decolorationis S12 could use a range of carbon sources for azo dye decolorization, including lactate, formate, glucose and sucrose, with lactate being the optimal carbon source. Sulfonated aromatic amines were not detected during the biotransformation of Fast Acid Red GR, while H2S formed. The decolorizing products, aniline, 1,4-diaminobenzene and 1-amino-2-naphthol, were followed by complete biodegradation through catechol and 4-aminobenzoic acid based on the analysis results of GC-MS and HPLC.

Keywords: Azo dye biodegradation; Microaerophilic conditions; Shewanella decolorationis S12

Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: