Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

Applied Microbiology and Biotechnology (v.53, #2)


Recent developments in the characterization and biotechnological production of sweet-tasting proteins by I. Faus (pp. 145-151).
 The state of the art regarding the six known sweet-tasting proteins (thaumatin, monellin, mabinlin, pentadin, brazzein and curculin) and the taste-modifying protein miraculin is reviewed. Their biochemical properties, molecular genetics and biotechnological production are assessed. All of these proteins have been isolated from plants that grow in tropical rainforests. They share no sequence homology or structural similarities. Nonetheless, one of them, thaumatin, shares extensive homology with certain non-sweet proteins found in other plants. The potential industrial applications of the sweet-tasting proteins are also discussed, placing special emphasis on the barriers that a recombinant product of these characteristics will have to overcome before it reaches the market.

Synthesis of α-ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol by O. G. Chernyavskaya; N. V. Shishkanova; A. P. Il'chenko; T. V. Finogenova (pp. 152-158).
The ability of yeast to synthesize α-ketoglutaric acid (KGA) from ethanol has been studied. Thiamine-auxotrophic yeasts of different genera and species may be able to produce KGA; the main condition of synthesis is growth limitation by thiamine. Using a model culture, mutant Yarrowia lipolytica N 1, the principal conditions affecting KGA oversynthesis were identified. These were: thiamine concentration in medium and in cells, nitrogen and oxygen concentration in medium, and pH level. A KGA concentration of 49 g/l and a yield from ethanol consumed of 42% were achieved. Based on the results of the analysis of the activities of the key enzymes participating in ethanol metabolism and KGA synthesis, a concept of the mechanism of KGA biosynthesis by Y. lipolytica yeast is suggested and discussed.

Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687 by I. M. Aasen; T. Møretrø; T. Katla; L. Axelsson; I. Storrø (pp. 159-166).
The effects of process conditions and growth kinetics on the production of the bacteriocin sakacin P by Lactobacillus sakei CCUG 42687 have been studied in pH-controlled fermentations. The fermentations could be divided into phases based on the growth kinetics, phase one being a short period of exponential growth, and three subsequent ones being phases of with decreasing specific growth rate. Sakacin P production was maximal at 20 °C. At higher temperatures (25–30 °C) the production ceased at lower cell masses, when less glucose was consumed, resulting in much lower sakacin P concentrations. With similar media and pH, the maximum sakacin P concentration at 20 °C was seven times higher than that at 30 °C. The growth rate increased with increasing concentrations of yeast extract, and the maximum concentration and specific production rate of sakacin P increased concomitantly. Increasing tryptone concentrations also had a positive influence upon sakacin P production, though the effect was significantly lower than that of yeast extract. The maximum sakacin P concentration obtained in this study was 20.5 mg l−1. On the basis of the growth and production kinetics, possible metabolic regulation of bacteriocin synthesis is discussed, e.g. the effects of availability of essential amino acids, other nutrients, and energy.

Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production by B. Füchtenbusch; D. Wullbrandt; A. Steinbüchel (pp. 167-172).
Screening experiments identified several bacteria which were able to use residual oil from biotechnological rhamnose production as a carbon source for growth. Ralstonia eutropha H16 and Pseudomonas oleovorans were able to use this waste material as the sole carbon source for growth and for the accumulation of polyhydroxyalkanoic acids (PHA). R. eutropha and P. oleovorans accumulated PHA amounting to 41.3% and 38.9%, respectively, of the cell dry mass, when these strains were cultivated in mineral salt medium with the oil from the rhamnose production as the sole carbon source. The accumulated PHA isolated from R. eutropha consisted of only 3-hydroxybutyric acid, whereas the PHA isolated from P. oleovorans consisted of 3-hydroxyhexanoic acid, 3-hydroxyoctanoic acid, 3-hydroxy decanoic acid, and 3-hydroxydodecanoic acid. The composition was confirmed by gas chromatography of the isolated polyesters. Batch and fed-batch cultivations in stirred-tank reactors were done.

Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC) by M. Nemati; J. Lowenadler; S. T. L. Harrison (pp. 173-179).
The effect of mineral particle size on the bioleaching of pyrite by the acidophilic thermophile Sulfolobus metallicus was investigated in a batch bioreactor. Decreasing the particle size from a mean diameter of 202 micron (size fraction: 150–180 micron) to a mean diameter of 42.5 micron (size fraction: 25–45 micron) enhanced the bioleaching rate from 0.05 kg m−3 h−1 to 0.098 kg m−3 h−1. The particle size distribution of the mineral in this range did not influence the morphology and growth kinetics of the cells. The values of specific growth rate (μ) and yield factor (Y) were 0.018–0.025 h−1 and 0.67 × 1011–1.45 × 1011 cells (g iron)−1, respectively. Decreasing the particle size of the mineral to a mean diameter of 6.40 micron (size fraction <25 micron) adversely influenced the activity of the cells. The presence of fine particles apparently damaged the structure of the cells, resulting in their inability to oxidise pyrite.

Studies on nutritional and oxygen requirements for production of L-asparaginase by Enterobacter aerogenes by J. Mukherjee; S. Majumdar; T. Scheper (pp. 180-184).
The carbon and nitrogen sources most suitable for L-asparaginase production by Enterobacter aerogenes were selected and their concentrations optimized in shake-flask cultures. Sodium citrate (1.0%) and diammonium hydrogen phosphate (0.16%) proved to be the best sources of carbon and nitrogen, respectively. Nitrogen catabolite repression of enzyme formation was absent in this bacterium. Cultivation in a reactor showed that the dissolved oxygen level is the limiting factor for L-asparaginase production by E. aerogenes. Glucose was found to be a repressor of enzyme synthesis. Asparagine was absent intracellularly when the L-asparaginase level was high. An increase in the extracellular alanine level when the dissolved oxygen remained low indicated a shift from aerobic to fermentative metabolism.

Novel regioselective hydroxylations of pyridine carboxylic acids at position C2 and pyrazine carboxylic acids at position C3 by A. Tinschert; A. Tschech; K. Heinzmann; A. Kiener (pp. 185-195).
We have previously described the isolation of the new bacterial species, Ralstonia/Burkholderia sp. strain DSM 6920, which grows with 6-methylnicotinate and regioselectively hydroxylates this substrate in the C2 position by the action of 6-methylnicotinate-2-oxidoreductase to yield 2-hydroxy-6-methylnicotinate (Tinschert et al. 1997). In the present study we show that this enzymatic activity can be used for the preparation of a series of hydroxylated heterocyclic carboxylic acid derivatives. The following products were obtained from the unhydroxylated educts by biotransformation using resting cells: 2-hydroxynicotinic acid, 2-hydroxy-6-methylnicotinic acid, 2-hydroxy-6-chloronicotinic acid, 2-hydroxy-5,6-dichloronicotinic acid, 3-hydroxypyrazine-2-carboxylic acid, 3-hydroxy-5-methylpyrazine-2-carboxylic acid and 3-hydroxy-5-chloropyrazine-2-carboxylic acid. Thus the respective educts were all regioselectively mono-hydroxylated at the carbon atom between the ring-nitrogen and the ring-carbon atom carrying the carboxyl group. In contrast to its relatively broad biotransformation abilities, the strain shows a limited heterocyclic nutritional spectrum. It could grow only with three of the seven transformed educts: 6-methylnicotinate, 2-hydroxy-6-methylnicotinate and 5-methylpyrazine-2-carboxylate. 2-Hydroxynicotinate, 2-hydroxy-6-chloronicotinate, 2-hydroxy-5,6-dichloronicotinate, 3-hydroxypyrazine-2-carboxylate and 3-hydroxy-5-chloropyrazine-2-carboxylate were not degraded by the strain. Therefore, unlike 6-methylnicotinate-2-oxidoreductase, which has a broad substrate spectrum, the second enzyme of the 6-methylnicotinate pathway seems to have a much more limited substrate range. Among 28 aromatic heterocyclic compounds tested as the sole source of carbon and energy, only pyridine-2,5-dicarboxylate was found as a further growth substrate, and this was degraded by a pathway which did not involve 6-methylnicotinate-2-oxidoreductase. To the best of our knowledge the microbial production of 2-hydroxy-6-chloronicotinic acid, 2-hydroxy-5,6-dichloronicotinic acid and 3-hydroxy-5-methylpyrazine-2-carboxylic acid have not been reported before. Strain DSM 6920 is so far the only known strain which allows the microbial production of both these compounds and 3-hydroxypyrazine-2-carboxylic acid and 3-hydroxy-5-chloroypyrazine-2-carboxylic acid.

Keratinase of Doratomyces microsporus by H. Gradišar; S. Kern; J. Friedrich (pp. 196-200).
 The fungus Doratomyces microsporus produced an extracellular keratinase during submerged aerobic cultivation in a medium containing a protein inducer for enzyme synthesis. The keratinase was purified to homogeneity using hydrophobic interaction chromatography followed by gel chromatography. The molecular weight was estimated to be 33 kDa (from SDS-PAGE analysis) or 30 kDa (by gel chromatography), suggesting a monomeric structure. The isoelectric point of the enzyme was determined to be around 9. The optimal pH and temperature for keratinolytic activity were pH 8–9 and 50 °C, respectively. The serine protease inhibitor PMSF totally inhibited the keratinase. The enzyme was not glycosylated. It was capable of hydrolysing different keratinous materials as well as some non-keratinous proteins. Hydrolysis of some synthetic substrates, specific for known proteinases, suggested that the keratinase of D. microsporus is close to proteinase K.

Production characteristics of interferon-α using an l-arabinose promoter system in a high-cell-density culture by H.-K. Lim; K.-H. Jung; D.-H. Park; S.-I. Chung (pp. 201-208).
 Using high-cell-density culture of Escherichia coli under the control of an l-arabinose promoter (ParaB), several factors affecting the production of recombinant protein and the formation of inclusion bodies were studied. The inducer, l-arabinose, showed a maximal induction level above 10.7 mM in the final concentration. The concentration of inducer also affected the partition of interferon-α (IFN-α) into the soluble form and inclusion bodies. Induction kinetics of the rate of accumulation of IFN-α on the ParaB promoter showed a slower rate than those of other promoter systems, for example T7, lac or tac. These innate characteristics of ParaB enabled cells to grow continuously in spite of the metabolic burden induced by the expression of foreign protein. The duration time of induction could control the expression of both soluble and insoluble protein. The ratio of yeast extract to glycerol (N/C ratio) in feeding media significantly affected both the production level of recombinant protein and inclusion body formation. The reason for decreasing specific bioactivity during induction can be explained by the increased proportion of inclusion bodies in the total expressed IFN-α.

Characterization and cloning of an (R)-specific trans-2,3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli by S. E. Reiser; T. A. Mitsky; K. J. Gruys (pp. 209-218).
An (R)-trans-2,3-enoylacyl-CoA hydratase was purified to near-homogeneity from Rhodospirillum rubrum. Protein sequencing of enriched protein fractions allowed the construction of a degenerate oligonucleotide. The gene encoding the (R)-specific hydratase activity was cloned following three rounds of colony hybridization using the oligonucleotide, and overexpression of the gene in E. coli led to the purification of the enzyme to homogeneity. The purified enzyme used crotonyl-CoA, trans-2,3-pentenoyl-CoA, and trans-2,3-hexenoyl-CoA with approximately equal specificity as substrates in the hydration reaction. However, no activity was observed using trans-2,3-octenoyl-CoA as a substrate, but this compound did partially inhibit crotonyl-CoA hydration. Based on the nucleotide sequence, the protein has a monomeric molecular weight of 15.4 kDa and is a homotetramer in its native form as determined by gel filtration chromatography and native PAGE. The hydratase was expressed together with the PHA synthase from Thiocapsa pfennigii in E. coli strain DH5α. Growth of these strains on oleic acid resulted in the production of the terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate).

Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor) by M. Gmeiner; W. Kneifel; K. D. Kulbe; R. Wouters; P. De Boever; L. Nollet; W. Verstraete (pp. 219-223).
Lactobacillus acidophilus 74-2, which is used in probiotic products, was administered, with fructooligosaccharide in a milk-based product, to the second vessel (duodenum/jejunum) of the SHIME reactor, an in vitro simulation of the human intestinal microbial ecology. The main focus of this study was to monitor the changes of the population density of selected bacterial species in the intestine and the changes of metabolic activities during the supplementation of L. acidophilus and fructooligosaccharide in the SHIME reactor. Interestingly, the addition of L. acidophilus 74-2 with fructooligosaccharide gave rise to an increase of bifidobacteria. Moreover, major positive changes occurred in the production of volatile fatty acids: a strong upward trend was observed especially in the case of butyric acid and propionic acid. Furthermore a noticeable increase of β-galactosidase activity was monitored, while the activity of β-glucuronidase, generally considered undesirable, declined.

Biocompatible alginate from freshly collected Laminaria pallida for implantation by A. Jork; F. Thürmer; H. Cramer; G. Zimmermann; P. Gessner; K. Hämel; G. Hofmann; B. Kuttler; H. -J. Hahn; O. Josimovic-Alasevic; K. -G. Fritsch; U. Zimmermann (pp. 224-229).
A simple procedure is described for the extraction and purification of alginate from the inner stipes of the kelp Laminaria pallida. Alginate yield was about 10–15% of the dry mass, with a 70:30 mannuronic/ guluronic acid ratio. Analysis of the purified alginate revealed a low polyphenol content while proteins were below detection level. The purified alginate was highly viscous, with 10–15 mPa s and 281 mPa s for a 0.1% and 0.5% solution, respectively, indicating a very high molecular mass (larger than 250 kDa). Bead formation occurred in the presence of divalent cations, but also in the presence of artificial serum (FCSIII) without added divalent cations. The biocompatibility of the alginate was tested with the in vitro mice lymphocyte test as well as by implantation of Ba2+ cross-linked beads beneath the kidney capsule of BB/OK rats. There was no evidence for significant mitogenic activity or fibrotic reaction. Biocompatibility of the alginate was also demonstrated by the encapsulation of human chondrocytes into Ca2+ cross-linked alginate beads. Immobilized chondrocytes grew and remained functional (i.e. they produced collagen).

Reactions of pentachlorophenol with laccase from Coriolus versicolor by M. A. Ullah; C. T. Bedford; C. S. Evans (pp. 230-234).
Laccase, purified from Coriolus versicolor, removed pentachlorophenol (PCP) from solution at pH 5, depending on initial PCP concentration and amount of laccase. With 100 units of laccase, 100% of 25 μg ml−1 PCP and 60% of 200 μg ml−1 PCP were removed respectively over 72 h. No free chloride was released in the reaction. In reaction with 100 μg PCP, products were primarily polymers (about 80,000 MW) with only 2–3 pg of o- and p-chloranils formed. Polymers were stable to acid hydrolysis and no release of PCP, or other low-molecular-weight products, was detected over several weeks. Laccase has a potential use in the biotreatment of aqueous effluents containing PCP, with polymerised products being removed from solution due to their high molecular weight.

Role of proteases in autolysis of Penicillium chrysogenum chemostat cultures in response to nutrient depletion by M. McIntyre; D. R. Berry; B. McNeil (pp. 235-242).
An industrial strain of Penicillium chrysogenum was subjected to carbon or nitrogen limitation in a chemostat and the response monitored in terms of the “classical” indicators of autolysis (biomass decline and ammonia release), culture degradation (as measured by image analysis) and by obtaining profiles for three classes of proteases implicated in autolysis. Under both sets of conditions (carbon or nitrogen limitation), once started, autolysis involved a succession of different protease activities. The first stages of the process of autolysis in starved chemostat cultures was associated with peaks in the activities of both serine and aspartyl proteases, coinciding with the mobilisation of endogenous energy reserves. Conversely, a peak in the activity of metalloproteases was associated with the later stages of autolysis, perhaps occurring in response to depletion of endogenous energy reserves; the activity of these enzymes led to gross culture degradation, disintegration of ordered mycelial structures and signalled the end of metabolic activity (respiration) within the culture. These findings indicate that strategies intended to control/regulate autolysis in large-scale industrial fungal cultures might profitably be focused on regulation of the activity of key classes of proteases involved in the series of events leading to culture degradation.

Role of the reactor configuration in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in lab-scale slurry phase conditions by F. Fava; D. Di Gioia; L. Marchetti (pp. 243-248).
 The biotreatability of a xenobiotic contaminated soil is frequently determined through a bioslurry treatment usually performed in lab-scale shaken baffled flasks. In this study, a 3-l unconventional stirred tank reactor was developed and tested in the slurry-phase treatment of a soil heavily contaminated by polychlorobiphenyls (PCBs) derived from an Italian dump site, in the absence and in the presence of biphenyl and of the exogenous PCB aerobically dechlorinating co-culture ECO3. The data obtained were compared with those obtained on the same soil in experiments performed in parallel in 3-l baffled shaken flask reactors. Considerably higher PCB removal and soil detoxification yields (determined through the Lepidium sativum germination test and the Collembola mortality test) were attained in the stirred tank reactors, which generally displayed a higher slurry-phase homogeneity and a higher availability of biphenyl- and chlorobenzoic acid-degrading bacteria compared to the corresponding shaken flask reactors. Moreover, enhanced soil PCB biodegradation and detoxification yields were observed when the developed reactor was supplemented with biphenyl and the exogenous ECO3 bacteria. In conclusion, the results of the soil biotreatability experiments commonly performed in bioslurry lab-scale reactors are significantly infuenced by the reactor configuration; the use of the unconventional stirred tank reactor system developed in this work is recommended.

Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent by C. O'Neill; A. Lopez; S. Esteves; F. R. Hawkes; D. L. Hawkes; S. Wilcox (pp. 249-254).
 Decolorisation of azo dyes during biological effluent treatment can involve both adsorption to cell biomass and degradation by azo-bond reduction during anaerobic digestion. Degradation is expected to form aromatic amines, which may be toxic and recalcitrant to anaerobic treatment but degradable aerobically. Methods for the quantitative detection of substituted aromatic amines arising from azo-dye cleavage are complex. A simple qualitative method is suggested as a way in which to investigate whether decolorisation is actually due to degradation, and whether the amines generated are successfully removed by aerobic treatment. Samples from a combined anaerobic-aerobic system used for treating a simulated textile wastewater containing the reactive azo dye Procion Red H-E7B were analysed by high-performance liquid chromatoraphy/ultraviolet (HPLC-UV) methods. Anaerobic treatment gave significant decolorisation, and respiration-inhibition tests showed that the anaerobic effluent had an increased toxicity, suggesting azo-dye degradation. The HPLC method showed that more polar, UV-absorbing compounds had been generated. Aerobically, these compounds were removed or converted to highly polar compounds, as shown by HPLC analysis. Since the total organic nitrogen (TON) decreased aerobically as organic N-containing compounds were mineralised, aromatic amine degradation is suggested. Although only a simple qualitative HPLC method was used, colour removal, toxicity and TON removal all support its usefulness in analysing biotreatment of azo dyes.
Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: