| Check out our New Publishers' Select for Free Articles |
Applied Microbiology and Biotechnology (v.50, #6)
Bacterial dehalogenation by S. Fetzner (pp. 633-657).
Halogenated organic compounds are produced industrially in large quantities and represent an important class of environmental pollutants. However, an abundance of haloorganic compounds is also produced naturally. Bacteria have evolved several strategies for the enzyme-catalyzed dehalogenation and degradation of both haloaliphatic and haloaromatic compounds: (i) Oxidative dehalogenation is the result of mono- or dioxygenase-catalyzed, co-metabolic or metabolic reactions. (ii) In dehydrohalogenase-catalyzed dehalogenation, halide elimination leads to the formation of a double bond. (iii) Substitutive dehalogenation in most cases is a hydrolytic process, catalyzed by halidohydrolases, but there also is a “thiolytic” mechanism with glutathione as cosubstrate. Dehalogenation by halohydrin hydrogen-halide lyases is the result of an intramolecular substitution reaction. (iv) A distinct dechlorination mechanism involves methyl transfer from chloromethane onto tetrahydrofolate. (v) Reductive dehalogenations are co-metabolic processes, or they are specific reactions involved in substrate utilization (carbon metabolism), or reductive dehalogenation is coupled to energy conservation: some anaerobic bacteria use a specific haloorganic compound as electron acceptor of a respiratory process. This review discusses the mechanisms of enzyme-catalyzed dehalogenation reactions, describes some pathways of the bacterial degradation of haloorganic compounds, and indicates some trends in the biological treatment of organohalogen-polluted air, groundwater, soil, and sediments.
Production of d-amino acids using immobilized d-hydantoinase from lentil, Lens esculenta, seeds by R. Rai; V. Taneja (pp. 658-662).
d-Hydantoinase from the lentil, Lens esculenta, seed is quite unstable, and has been immobilized on Diethyl amino ethyl (DEAE) cellulose by an adsorption and cross-linking method. The immboilized d-hydantoinase exhibited 80% enzyme activity and contained 86% protein. The immobilization of the enzyme preparation does not change its optimum pH, temperature or affinity constant, but increases its shelf-life, thermostability and stability in various organic solvents. This immobilized d-hydantoinase can be used effectively for the production of d-amino acids from the corresponding hydantoins and may therefore be of use in the chemical and pharmaceutical industries.
Identification and purification of O -acetyl-l-serine sulphhydrylase in Penicillium chrysogenum by S. Østergaard; H. B. Aa. Theilgaard; J. Nielsen (pp. 663-668).
We have demonstrated that Penicillium chrysogenum possesses the l-cysteine biosynthetic enzyme O-acetyl-l-serine sulphhydrylase (EC 4.2.99.8) of the direct sulphhydrylation pathway. The finding of this enzyme, and thus the presence of the direct sulphhydrylation pathway in P. chrysogenum, creates the potential for increasing the overall yield in penicillin production by enhancing the enzymatic activity of this microorganism. Only O-acetyl-l-serine sulphhydrylase and O-acetyl-l-homoserine sulphhydrylase (EC 4.2.99.10) have been demonstrated to use O-acetyl-l-serine as substrate for the formation of l-cysteine. The purified␣enzyme did not catalyse the formation of l-homocysteine from O-acetyl-l-homoserine and sulphide, excluding the possibility that the purified enzyme was O-acetyl-l-homoserine sulphhydrylase with multiple substrate specificity. The purification enhanced the enzymatic specific activity 93-fold in relation to the cell-free extract. Two bands, showing exactly the same intensity, were present on a sodium dodecyl sulphate/polyacrylamide gel, and the molecular masses of these were estimated to be 59 kDa and 68 kDa respectively. The K m value for O-acetyl-l-serine and V max of O-acetyl-l-serine sulphhydrylase were estimated to be 1.3 mM and 14.9 μmol/mg protein−1 h−1 respectively. The activity of the purified enzyme had a temperature optimum of approximately 45 °C, which is much higher than the actual temperature for penicillin synthesis. Furthermore, O-acetyl-l-serine sulphhydrylase activity was to have a maximum in the range of pH 7.0–7.4.
Properties of a cold-active protease from psychrotrophic Flavobacterium balustinum P104 by Y. Morita; Q. Hasan; T. Sakaguchi; Y. Murakami; K. Yokoyama; E. Tamiya (pp. 669-675).
Protease activity was detected in the culture medium of Flavobacterium balustinum P104 grown at 10 °C, which was isolated from salmon (Oncorhynchus keta) intestine. The enzyme, designated as CP-70 protease, was purified to homogeneity from the culture broth by ion exchange and gel filtration chromatographyies. The molecular mass of the protease was 70 kDa, and its isoelectric point was close to 3.5. Maximal activity toward azocasein was observed at 40 °C and from pH 7.0 to 9.0. The activity was strongly inhibited by phenylmethylsulfonyl fluoride, suggesting that the enzyme is a serine protease. The n-terminal amino acid sequence was Asp-Thr-Arg-Gln-Leu-Leu-Asn-Ala-Asn-Ser-Asp-Leu-Leu-Asn-Thr-Thr-Gly-Asn-Val-Thr-Gly-Leu-Thr-Gly-Ala-Phe-Asn-Gly-Glu-Asn. A search through the database for sequence homology yielded no significant match. The initial cleavage sites for oxidized insulin B-chain were found to be the Glu13-Ala14 and Phe24-Phe25 bonds. The result of the cleavage pattern of oxidized insulin B-chain suggests that CP-70 protease has a broader specificity than the other cold-active proteases against the peptide substrate.
Immobilization of lipase from Candida rugosa on a polymer support by L. Mojovic; Z. Knezevic; R. Popadic; S. Jovanovic (pp. 676-681).
Lipase from Candida rugosa was immobilized by adsorption onto a macroporous copolymer support. Under optimum conditions the maximum amount of protein bound was 15.4 mg/g and the immobilization efficiency was 62%. The kinetics of lipase binding to the selected polymer carrier was assessed by using a general model of topochemical reactions. The effect of temperature on adsorption was thoroughly investigated, as was the adsorption mechanism itself. Analysis of the proposed kinetic model and the specific kinetic parameters measured suggest that surface kinetics control the adsorption process. According to the activation energy (E a) and the rate constant, k, the enzyme has rather a high affinity for the support's active sites. The immobilized enzyme was used to catalyse the hydrolysis of palm oil in a lecithin/isooctane reaction system, in which the enzyme's activity was 70% that of the free enzyme. Kinetic parameters such as maximum velocity (V max) and the Michaelis constant (K m) were determined for the free and the immobilized lipase. Following repeated use, the immobilized lipase retained 56% of its initial activity after the fifth hydrolysis cycle.
Growth and flocculation of a marine photosynthetic bacterium Rhodovulum sp. by M. Watanabe; K. Sasaki; Y. Nakashimada; T. Kakizono; N. Noparatnaraporn; N. Nishio (pp. 682-691).
A marine photosynthetic bacterium (PS88), identified as Rhodovulum sp., with flocculating ability was isolated from the sea sediment mud of a shrimp cultivation farm in Thailand. This bacterium flocculated in glutamate/malate medium during aerobic dark or anaerobic light cultivation. The flocculating ability was enhanced with the increase of NaCl concentration to 6% (w/v). When PS88 was grown in glutamate/malate medium containing 3.5% NaCl, protein, RNA and DNA were produced exocellularly and there was flocculation. The yields of DNA, RNA and protein were 8.3, 62.5 and 48.5 mg/g dry cell, respectively. The flocculated cells were deflocculated by treatment with a nucleolytic enzyme such as RNase or DNase, while amylase, protease, trypsin, cellulase and pectinase had no deflocculating effect. These results suggest that the exocellular nucleic acids are active in flocculation.
A second polycaprolactone depolymerase from Fusarium, a lipase distinct from cutinase by C. A. Murphy; J. A. Cameron; S. J. Huang; R. T. Vinopal (pp. 692-696).
Polycaprolactone (PCL), a synthetic polyester with applications in biodegradable plastics, is degraded by a variety of microorganisms, including fungal phytopathogens. These pathogens secrete cutinase, which hydrolyzes cutin, the polyester structural component of plant cuticle, releasing ω-hydroxy fatty acids that induce cutinase synthesis. Our laboratory previously reported that growth of Fusarium solani on PCL requires cutinase, which is active as a PCL depolymerase and induced by the products of its action on PCL. A mutant strain of F. solani in which the cutinase gene is deleted was unable to grow on PCL and did not secrete PCL depolymerase activity in the media tested. It is now shown that this mutant produces a PCL depolymerase in media containing lipase inducers. Wild-type strains also produce this second PCL depolymerase, which is induced by Tween 80 and tributyrin, but not by PCL or cutin. The second depolymerase shows interfacial activation, indicating that it is a lipase. PCL may thus be a substrate but not an inducer of depolymerases that degrade it, and screening microorganisms on medium with PCL as the sole source of carbon and energy may fail to reveal strains with active PCL depolymerases, because of the absence of an inducer. Surprisingly, Tween 80 induces both cutinase and lipase activities in wild-type F. solani.
Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides by G. H. van Geel-Schutten; F. Flesch; B. ten Brink; M. R. Smith; L. Dijkhuizen (pp. 697-703).
A total of 182 Lactobacillus strains were screened for production of extracellular polysaccharides (EPS) by a new method: growth in liquid media with high sugar concentrations. Sixty EPS-positive strains were identified; 17 strains produced more than 100 mg/l soluble EPS. Sucrose was an excellent substrate for abundant EPS synthesis. The ability to produce glucans appears to be widespread in the genus Lactobacillus. The monosaccharide composition of EPS produced by Lactobacillus reuteri strain LB 121 varied with the growth conditions (solid compared to liquid medium) and the sugar substrates (sucrose or raffinose) supplied in the medium. Strain LB 121 produced both a glucan and a fructan on sucrose, but only a fructan on raffinose. This is the first report of fructan production by a Lactobacillus species. EPS production increased with increasing sucrose concentrations and involved extracellular sucrase-type enzymes.
Escherichia coli and Lactobacillus plantarum responses to osmotic stress by I. Poirier; P.-A. Maréchal; C. Evrard; P. Gervais (pp. 704-709).
Escherichia coli and Lactobacillus plantarum were subjected to final water potentials of −5.6 MPa and −11.5 MPa with three solutes: glycerol, sorbitol and NaCl. The water potential decrease was realized either rapidly (osmotic shock) or slowly (20 min) and a difference in cell viability between these conditions was only observed when the solute was NaCl. The cell mortality during osmotic shocks induced by NaCl cannot be explained by a critical volume decrease or by the intensity of the water flow across the cell membrane. When the osmotic stress is realized with NaCl as the solute, in a medium in which osmoregulation cannot take place, the application of a slow decrease in water potential resulted in the significant maintenance of cell viability (about 70–90%) with regard to the corresponding viability observed after a sudden step change to same final water potential (14–40%). This viability difference can be explained by the existence of a critical internal free Na+ concentration.
An amperometric enzyme-linked immunosensor for Nitrobacter by B. Sandén; L. H. Eng; G. Dalhammar (pp. 710-716).
A new amperometric enzyme-linked immunoassay for specific enumeration of Nitrobacter has been developed. This assay uses an electrode made of glassy carbon, on which the immunological reaction is carried out. The method is based on a competitive immunoassay principle, utilising monoclonal primary antibody and alkaline-phosphatase-labelled secondary antibody. The enzyme substrate 5-bromo-4-chloro-3-indolyl phosphate generates an electroactive product which is amperometrically detected. The effects of different parameters on the performance of the sensor have been studied. Quantitative detection of Nitrobacter using the immunosensor has been compared to a previously developed enzyme-linked immunosorbent assay showing compatible results. In addition, the overall assay time can be shortened with this new sensor. A detection limit of approximately 3 × 106 Nitrobacter cells/ml was obtained.
