Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

Applied Microbiology and Biotechnology (v.49, #6)


New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation by P. Dürre (pp. 639-648).
Clostridial acetone/butanol fermentation used to rank second only to ethanol fermentation by yeast in its scale of production and thus is one of the largest biotechnological processes known. Its decline since about 1950 has been caused by increasing substrate costs and the availability of much cheaper feedstocks for chemical solvent synthesis by the petrochemical industry. The so-called oil crisis in 1973 led to renewed interest in novel fermentation and product recovery technologies as well as in the metabolism and genetics of the bacterial species involved. As a consequence, almost all of the enzymes leading to solvent formation are known, their genes have been sequenced (in fact, Clostridium acetobutylicum has been recently included in the microbial genome sequencing project), the regulatory mechanisms controlling solventogenesis have begun to emerge and recombinant DNA techniques have been developed for these clostridia to construct specific production strains. In parallel, cheap agricultural-waste-based feedstocks have been exploited for their potential as novel substrates, continuous culture methods have been successfully established and new on-line product recovery technologies are now available, such as gas stripping, liquid/liquid extraction, and membrane-based methods. In combination with these achievements, a reintroduction of acetone/butanol fermentation on an industrial scale seems to be economically feasible, a view that is supported by a new pilot plant in Austria recently coming into operation.

Safety analysis of contained low-hazard biotechnology applications by D. Pettauer; O. Käppeli; G. van den Eede (pp. 649-654).
A technical safety analysis has been performed on a containment-level-2 pilot plant in order to assess an upgrading of the existing facility, which should comply with good manufacturing practices. The results were obtained by employing the hazard and operability (HAZOP) assessment method and are discussed in the light of the appropriateness of this procedural tool for low-hazard biotechnology applications. The potential release of micro-organisms accounts only for a minor part of the hazardous consequences. However, in certain cases the release of a large or moderate amount of micro-organisms would not be immediately identified. Most of the actions required to avoid these consequences fall into the realm of operational procedures. As a major part of potential failures result from human errors, standard operating procedures play a prominent role when establishing the concept of safety management. The HAZOP assessment method was found to be adequate for the type of process under investigation. The results also may be used for the generation of checklists which, in most cases, are sufficient for routine safety assurance.

Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor by Q. Hu; N. Kurano; M. Kawachi; I. Iwasaki; S. Miyachi (pp. 655-662).
To test the feasibility of CO2 remediation by microalgal photosynthesis, a modified type of flat-plate photobioreactor [Hu et al. (1996) Biotechnol Bioeng 51:51–60] has been designed for cultivation of a high-CO2-tolerant unicellular green alga Chlorococcum littorale. The modified reactor has a narrow light path in which intensive turbulent flow is provided by streaming compressed air through perforated tubing into the culture suspension. The length of the reactor light path was optimized for the productivity of biomass. The interrelationship between cell density and productivity, as affected by incident light intensity, was quantitatively assessed. Cellular ultrastructural and biochemical changes in response to ultrahigh cell density were investigated. The potential of biomass production under extremely high CO2 concentrations was also evaluated. By growing C. littorale cells in this reactor, a CO2 fixation rate of 16.7 g CO2 l−1 24 h−1 (or 200.4 g CO2 m−2 24 h−1) could readily be sustained at a light intensity of 2000 μmol m−2 s−1 at 25 °C, and an ultrahigh cell density of well over 80 g l−1 could be maintained by daily replacing the culture medium.

Simulation of in situ subsurface biodegradation of polychlorophenols in air-lift percolators by J. H. Langwaldt; M. K. Männistö; R. Wichmann; J. A. Puhakka (pp. 663-668).
Air-lift percolator experiments simulated in situ subsurface degradation of 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol, in mixtures and individually, by indigenous microorganisms from a chlorophenol-contaminated aquifer. Inoculation with a chlorophenol(CP)-degrading gram-positive isolate from the CP-contaminated groundwater did not significantly increase CP degradation rates. Feed concentrations of up to 55 mg CP l−1 were degraded. Stable CP degradation was maintained for over 6 months. CP degradation rates up to 54.3 mg l−1 day−1 and effluent concentrations below 40 μg CP l−1 were achieved. CP were mineralized as shown by CP reduction, dissolved organic carbon removal and release of inorganic chloride.

Development of markers for product formation and cell cycle in batch cultivation of Clostridium acetobutylicum ATCC 824 by K. C. Schuster; R. van den Heuvel; N. A. Gutierrez; I. S. Maddox (pp. 669-676).
Experiments were performed to identify relationships between morphological and physiological events during batch fermentation of Clostridium acetobutylicum ATCC 824. Differing fermentation conditions were obtained by manipulation of the culture pH value during the process. The bacterium showed marked changes in morphology during its cultivation, similar to those previously observed for other strains. However, although the acidogenic phase was characterized by the presence of rod-shaped cells, and the solventogenic phase by clostridial forms, there was no simple relationship between the proportion of clostridial forms present and the ratio of solvents to acids. Nevertheless, the shift from acidogenesis to solventogenesis was always coincident with the presence of some clostridial forms and with the accumulation of granulose within the cells. In addition, the “solvent shift” was associated with major changes in the cellular protein pattern, as analysed by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. Hence, the potential solventogenic ability of any particular culture may be recognised by its morphological appearance and/or its cellular protein pattern.

Monitoring nitric oxide from immobilised denitrifying bacteria, Pseudomonas stutzeri, by the use of chemiluminescence by P. Arvidsson; K. Nilsson; H. Håkanson; B. Mattiasson (pp. 677-681).
A chemiluminescence detector was used to measure the production of nitric oxide, NO, from the denitrifying bacteria Pseudomonas stutzeri. NO is an intermediate when P. stutzeri converts nitrate into nitrogen gas. The reaction between NO and ozone is selective and sensitive in generating chemiluminescence. Calibrations were made down to 1 nM, with a signal-to-noise ratio of 3. Bacteria were immobilised in alginate beads. Denitrification experiments were made in an anaerobic non-growth medium by adding nitrate to a certain concentration in the reactor. The bacteria were exposed to nitrate in the concentration range 1 pM–5 mM. The lowest concentration to give a measurable NO response was 100 nM.

Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour by C. Åkerberg; K. Hofvendahl; G. Zacchi; B. Hahn-Hägerdal (pp. 682-690).
A kinetic model of the fermentative production of lactic acid from glucose by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour has been developed. The model consists of terms for substrate and product inhibition as well as for the influence of pH and temperature. Experimental data from fermentation experiments under different physical conditions were used to fit and verify the model. Temperatures above 30 °C and pH levels below 6 enhanced the formation of by-products and d-lactic acid. By-products were formed in the presence of maltose only, whereas d-lactic acid was formed independently of the presence of maltose although the amount formed was greater when maltose was present. The lactic acid productivity was highest between 33 °C and 35 °C and at pH 6. In the concentration interval studied (up to 180 g l−1 glucose and 89  g l−1 lactic acid) simulations showed that both substances were inhibiting. Glucose inhibition was small compared with the inhibition due to lactic acid.

Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor by L. J. Jönsson; E. Palmqvist; N.-O. Nilvebrant; B. Hahn-Hägerdal (pp. 691-697).
Fermentation of wood hydrolysates to desirable products, such as fuel ethanol, is made difficult by the presence of inhibitory compounds in the hydrolysates. Here we present a novel method to increase the fermentability of lignocellulosic hydrolysates: enzymatic detoxification. Besides the detoxification effect, treatment with purified enzymes provides a new way to identify inhibitors by assaying the effect of enzymatic attack on specific compounds in the hydrolysate. Laccase, a phenol oxidase, and lignin peroxidase purified from the ligninolytic basidiomycete fungus Trametes versicolor were studied using a lignocellulosic hydrolysate from willow pretreated with steam and SO2. Saccharomyces cerevisiae was employed for ethanolic fermentation of the hydrolysates. The results show more rapid consumption of glucose and increased ethanol productivity for samples treated with laccase. Treatment of the hydrolysate with lignin peroxidase also resulted in improved fermentability. Analyses by GC-MS indicated that the mechanism of laccase detoxification involves removal of monoaromatic phenolic compounds present in the hydrolysate. The results support the suggestion that phenolic compounds are important inhibitors of the fermentation process.

Evaluation of the efficiency of measures for sulphidic mine waste mitigation by A. Schippers; P.-G. Jozsa; W. Sand (pp. 698-701).
To control the environmentally detrimental impact of acid rock drainage, two different countermeasures, layers of acid-buffering materials and sodium dodecyl sulphate addition, were tested for their efficiency in laboratory percolation experiments. In the experiment with a layer of calcium bentonite, only the iron output was reduced. The experiments with layers of concrete grains demonstrated a decrease of the microbial activity as well as a precipitation of heavy-metal ions, whereas the cell numbers did not decrease. Furthermore, finely grained concrete (1–5 mm) formed a water-tight hardpan (self-sealing layer). In the experiment with 1 mM sodium dodecyl sulphate, all the microorganisms were killed and hence metal sulphide dissolution was stopped. With 0.1 mM sodium dodecyl sulphate only a short, transient inhibition of leaching was achieved. The bacteria remained alive.

Low-specificity l-threonine aldolase of Pseudomonas sp. NCIMB 10558: purification, characterization and its application to β-hydroxy-α-amino acid synthesis by J. Q. Liu; S. Ito; T. Dairi; N. Itoh; S. Shimizu; H. Yamada (pp. 702-708).
Low-specificity l-threonine aldolase, catalyzing the reversible cleavage/condensation reaction between l-threonine/l-allo-threonine and glycine plus acetaldehyde, was purified to homogeneity from Pseudomonas sp. NCIMB 10558. The enzyme has an apparent molecular mass of approximately 145 kDa and consists of four identical subunits with a molecular mass of 38 kDa. The enzyme, requiring pyridoxal- 5′-phosphate as a coenzyme, is strictly l-specific at the α position, whereas it can not distinguish between threo and erythro forms at the β position. Besides the reversible cleavage/condensation of threonine, the enzyme also catalyzes the reversible interconversion between glycine plus various aldehydes and l-β-hydroxy-α-amino acids, including l-β-(3,4-dihydroxyphenyl)serine, l-β-(3,4-met‐hylenedioxyphenyl)serine and l-β-phenylserine, providing a new route for the industrial production of these important amino acids.

Purification, characterization and immobilization of an NADPH-dependent enzyme involved in the chiral specific reduction of the keto ester M, an intermediate in the synthesis of an anti-asthma drug, Montelukast, from Microbacterium campoquemadoensis (MB5614) by A. Shafiee; H. Motamedi; A. King (pp. 709-717).
(S)(E)-2-{3-[3-[2-(7-chloro-2-quinolinyl)ethenyl]-phenyl]-3-hydroxypropyl} benzoic acid methyl ester,␣a key intermediate in the synthesis of the anti-asthma drug, Montelukast, was prepared from the corresponding ketone (keto ester M) by microbial transformation. The biotransforming organism, Microbacterium campoquemadoensis (MB5614), was discovered as a result of an extensive screening program and was used for the isolation and purification of the responsible enzyme. The enzyme is a soluble cytoplasmic protein which was purified as a complex with a low-molecular-mass molecule that had a visible-light absorption maximum at 460 nm. The purified enzyme has an apparent molecular mass of 60 kDa, when denatured, and is isolated in the native state as an oligomer. The isolated enzyme requires NADPH for its activity and reduces the keto ester M to the desired (S)-hydroxy ester with an enantiomeric excess greater than 95% at the optimum temperature of 30 °C and pH 8. The enzyme was immobilized on oxirane-activated acrylamide beads with some loss of activity, but it was fully active in a two-phase (water/hexane 25:75) solvent system, both as a free solution and in an immobilized form.

A third xylanase from Trichoderma reesei PC-3-7 by J. Xu; N. Takakuwa; M. Nogawa; H. Okada; Y. Morikawa (pp. 718-724).
A third xylanase (Xyn III) from Trichoderma reesei PC-3–7 was purified to electrophoretic homogeneity by gel filtration and ion-exchange chromatographies. The enzyme had a molecular mass of 32 kDa, and its isoelectric point was 9.1. The pH optimum of Xyn III was 6.0, similar to that of Xyn II, another basic xylanase of  T. reesei. The purified Xyn III showed high activity with birchwood xylan but no activity with cellulose and aryl glycoside. The hydrolysis of birchwood xylan by Xyn III produced mainly xylobiose, xylotriose and other xylooligosaccharides. The amino acid sequences of the N-terminus and internal peptides of Xyn III exhibited high homology with the family F xylanases, showing that they were distinct from those of Xyn I and Xyn II of  T. reesei, which belong to family G. These results reveal that Xyn III is a new specific endoxylanase, differing from Xyn I and Xyn II in  T. reesei. It is noteworthy that this novel xylanase was induced only by cellulosic substrates and l-sorbose but not by xylan and its derivarives. Furthermore,  T. reesei PC-3-7 produced Xyn III in quantity when grown on Avicel or lactose as a carbon source, while  T. reesei QM9414 produced little or no Xyn III.

A genetically engineered strain of Saccharopolyspora erythraea that produces 6,12-dideoxyerythromycin A as the major fermentation product by D. Stassi; D. Post; M. Satter; M. Jackson; G. Maine (pp. 725-731).
The erythromycin producer, Saccharopolyspora erythraea ER720, was genetically engineered to produce 6,12-dideoxyerythromycin A, a novel erythromycin derivative, as the major macrolide in the fermentation broth. Inspection of the biosynthetic pathway for erythromycin would suggest that production of this compound could be achieved simply through the disruption of two genes, that encoding the erythromycin C-6 hydroxylase (eryF ) and that encoding the erythromycin C-12 hydroxylase (eryK ). The double mutant, however, was found to produce a mixture of 6,12-dideoxyerythromycin A and the precursor, 6-deoxyerythromycin D. Complete conversion to the desired product (to the limit of detection by TLC) was achieved by inserting an additional copy of the eryG gene, encoding the erythromycin 3′′-O-methyltransferase and driven by the ermE* promoter, into the S. erythraea chromosome.

Effect of the oxygen supply on pattern of growth and corrinoid and organic acid production of Propionibacterium shermanii by A. Quesada-Chanto; M. M. Silveira; A. C. Schmid-Meyer; A. G. Schroeder; J. P. C. L. da Costa; J. López; M. F. Carvalho-Jonas; M. J. Artolozaga; R. Jonas (pp. 732-736).
Propionibacterium shermanii CDB 10014 is able to grow even at high oxygen transfer rates (24.0 mmol O2 l−1 h−1), in contrast to reports in the specialised literature, where all Propionibacteria are considered oxygen-sensitive microorganisms. Propionic acid is the main product in anaerobiosis. The presence of oxygen in the system leads to an inhibition of propionic acid production while acetic acid formation is enhanced. At high oxygen supply rates no propionic acid is produced and acetic acid is the main product. Lactic acid is also produced in reasonable quantities (2.7 g l−1). The growth rate (μmax) is higher in anaerobiosis (0.19 h−1) than in aerobiosis (0.12–0.15 h−1). The cell yield is higher in aerobiosis (0.18–0.22 g g−1) than in anaerobiosis (0.14 g g−1) suggesting the oxidative metabolism of glucose by Propionibacterium shermanii CDB 10014. No corrinoid production was detected at oxygen transfer rates of more than 13.6 mmol l−1 h−1.

trans activation of the Escherichia coliato structural genes by a regulatory protein from Bacillus megaterium : potential use in polyhydroxyalkanoate production by M. J. Pettinari; G. J. Vazquez; N. Krüger; P. S. Vary; A. Steinbüchel; B. S. Méndez (pp. 737-742).
A Bacillus megaterium genomic fragment, which encoded an activator homologous to σ54 regulators and which was capable of activating Escherichia coli ato genes in trans, was detected in a gene library of B.␣megaterium screened for β-ketothiolase activity. The fragment presented only one complete open reading frame (ORF1), which encoded a protein of 398 amino acids. The recombinant plasmid complemented mutations in the Escherichia coli atoC regulatory gene. The constitutive expression of the E. coli ato operon mediated by ORF1 could be useful for the synthesis of polyhydroxyalkanoates with different flexibility properties by recombinant E. coli strains.

Mutants of Pseudomonas putida affected in poly-3-hydroxyalkanoate synthesis by Q. Ren; B. Kessler; F. van der Leij; B. Witholt (pp. 743-750).
The generation and characterization of Pseudomonas putida KT2442 mutants affected in poly-3-hydroxyalkanoate (PHA) synthesis are reported. The mutants from P. putida KT2442 carrying several copies of the PHA-polymerase-encoding gene (phaC) were isolated via N-methyl-N′-nitro-N-nitrosoguanidine chemical mutagenesis and contained mutation(s) on genes that are involved in PHA accumulation other than the phaC genes. No PHA-free mutants were obtained, suggesting that there must be various routes for the synthesis of PHA polymerase precursors. One of the isolated mutants (GPp120) accumulated more PHA than the parental strain, and there was virtually no down-regulation of PHA formation by growth in non-limiting amounts of nitrogen, which normally block or reduce formation of PHA. Compared to the parental strain, GPp120 exhibited significant changes in physiology and morphology when grown in minimal medium: the growth rate was reduced more than twofold and cells formed filaments. The other four groups of isolated mutants, with P. putida strains GPp121 to GPp124 as characteristic type strains, exhibited morphological characteristics similar to those of the parental strain. However, they showed reduced PHA production compared to the parental PHA+ strain, and especially GPp121 and GPp122 showed PHA formation tightly controlled by nutrient conditions. All of these mutants provide starting points for genetically dissecting the biosynthesis and regulation of PHA precursors.

Manganese toxicity towards Saccharomyces cerevisiae : Dependence on intracellular and extracellular magnesium concentrations by K. J. Blackwell; J. M. Tobin; S. V. Avery (pp. 751-757).
Inhibition of the growth of Saccharomyces cerevisiae was evident at concentrations of 0.5 mM Mn2+ or higher, but a tolerance to lower Mn2+ concentrations was observed. The inhibitory effects of 2.0 mM Mn2+ were eliminated by supplementing the medium with excess Mg2+ (10 mM), whereas addition of excess Ca2+ and K+ had negligible effect on Mn2+ toxicity. Growth inhibition by Mn2+, in the absence of a Mg2+ supplement, was attributed to Mn2+ accumulation to toxic intracellular levels. Mn levels in S. cerevisiae grown in Mg2+-supplemented medium were severalfold lower than those of cells growing in unsupplemented medium. Mn2+ toxicity was also influenced by intracellular Mg, as Mn2+ toxicity was found to be more closely correlated with the cellular Mg:Mn ratio than with cellular Mn levels alone. Cells with low intracellular levels of Mg were more susceptible to Mn2+ toxicity than cells with high cellular Mg, even when sequestered Mn2+ levels were similar. A critical Mg:Mn ratio of 2.0 was identified below which Mn2+ toxicity became acute. The results demonstrate the importance of intracellular and extracellular competitive interactions in determining the toxicity of Mn2+.

Carbon:nitrogen ratio interacts with initial concentration of total solids on insecticidal crystal protein and spore production in Bacillus thuringiensis HD-73 by R. R. Farrera; F. Pérez-Guevara; M. de la Torre (pp. 758-765).
A response-surface methodology was used to study the effect of carbon:nitrogen ratio (C:N) and initial concentration of total solids (C TS) on insecticidal crystal protein production and final spore count. Bacillus thuringiensis var. kurstaki HD-73 was grown in a stirred-tank reactor using soybean meal, glucose, yeast extract, corn steep solids and mineral salts. Soybean meal and glucose were added according to a central composite experimental design to test C:N ratios ranging from 3:1 to 11:1 and C TS levels from 60␣g/l to 150 g/l. Cry production was quantified using sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The response-surface model, adjusted to the data, indicated that media with a C:N of 7:1 yielded the highest relative Cry production at each C TS. The spore count was higher at low C:N ratio (4:1) and high C TS (near 150 g/l). Specific Cry production varied from 0.6 to 2.2 g Cry/1010 spores. A 2.5-fold increase in C TS resulted in a six-fold increase of protoxin production at a 7:1 C:N ratio. It is concluded that the best production conditions for Cry and for spores are different and optimization of B. thuringiensis processes should not be done on a spore-count basis but on the amount of Cry synthesized.

Inactivation of bacteriophage k, Escherichia coli, and Candida albicans by ozone by I. R. Komanapalli; B. H. S. Lau (pp. 766-769).
The effects of ozone (O3) on three types of microbes were studied. Test suspensions were exposed to 600 ppm O3 at room temperature. Control experiments were performed under identical conditions using oxygen gas. Bacteriophage λ was completely inactivated at 10 min while Escherichia coli and Candida albicans were only inactivated by factors of 105 and 104 respectively at 40 min. Exposure of a mixed microbial suspension to O3 for 5 min resulted in 100% killing of bacteriophages while the viability of E. coli remained unchanged. Various body fluids containing phages were exposed to O3. Compared to buffered solution, the decrease in phage titers was significantly slower in whole blood, plasma, and albumin. Both E. coli and  C. albicans had increased production of thiobarbituric-acid-reactive substances with increased O3 exposure. 3H-labelled amino acids were incorporated into E. coli. O3 treatment resulted in a loss of radioactivity, indicating leakage of cytoplasmic contents. The data indicate that microbes are inactivated by O3 at different rates, possibly related to differential membrane permeability. The milieu in which microbes are present determines the effectiveness and outcome of O3 treatment.

Purification and properties of a thermoactive and thermostable pullulanase from Thermococcushydrothermalis, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent by H. Gantelet; F. Duchiron (pp. 770-777).
The extremely thermophilic archaeon Thermococcus hydrothermalis, isolated from a deep-sea hydrothermal vent in the East Pacific Rise at 21°N, produced an extracellular pullulanase. This enzyme was purified 97-fold to homogeneity from cell-free culture supernatant. The purified pullulanase was composed of a single polypeptide chain having an estimated molecular mass of 110 kDa (gel filtration) or 128 kDa (sodium dodecyl sulfate/polyacryl amide gel electrophoresis). The enzyme showed optimum activity at pH 5.5 and 95 °C. The thermostability and the thermoactivity were considerably increased in the presence of Ca2+. The enzyme was activated by 2-mercaptoethanol and dithiothreitol, whereas N-bromosuccinimide and α-cyclodextrin were inhibitors. This enzyme was able to hydrolyze, in addition to the α-1,6-glucosidic linkages in pullulan, α-1,4-glucosidic linkages in amylose and soluble starch, and can therefore be classified as a type II pullulanase or an amylopullulanase. The purified enzyme displayed Michaelis constant (K m) values of 0.95 mg/ml for pullulan and 3.55 mg/ml for soluble starch without calcium and, in the presence of Ca2+, 0.25 mg/ml for pullulan and 1.45 mg/ml for soluble starch.

Involvement of manganese peroxidase in the transformation of macromolecules from low-rank coal by Phanerochaete chrysosporium by J. P. Ralph; D. E. A. Catcheside (pp. 778-784).
Manganese peroxidase (Mn peroxidase) catalyses the oxidation of Mn(II) to Mn(III), a diffusible non-specific oxidant likely to be involved in the transformation of polyphenolic macromolecules from brown coal by the white-rot fungus Phanerochaete chrysosporium. We report here that solubilised macromolecules from Morwell brown coal were depolymerised by Mn(III) ions when incubated under hyperbaric O2. However, under N2 or air they were polymerised, suggesting that net depolymerisation by Mn(III) requires molecular oxygen to inhibit coupling of coal radicals. Coal macromolecules were also polymerised when separated by a semipermeable membrane from a culture of P. chrysosporium or from a solution of Mn peroxidase, Mn(II) and H2O2, probably by Mn(III) crossing the membrane. In oxygenated cultures in which Mn peroxidase␣was up-regulated by Mn(II), the extent of depolymerisation correlated with cumulative Mn peroxidase activity suggesting that Mn-peroxidase-generated Mn(III) has a central role in initial depolymerisation of coal molecules in vivo. However, mutant ME446-B17-1, which produces Mn peroxidase but not lignin peroxidase, polymerised coal macromolecules in oxygenated cultures. In sum, it appears Mn peroxidase can both polymerise and depolymerise brown coal macromolecules and that, in vivo, both hyperbaric O2 and lignin peroxidase are also required to force net depolymerisation to products assimilable by cells.

Degradation of naphthalene by cells of Pseudomonas sp. strain NGK 1 immobilized in alginate, agar and polyacrylamide by S. Manohar; T. B. Karegoudar (pp. 785-792).
A Pseudomonas sp. strain NGK 1 (NCIM 5120) was immobilized in various matrices, namely, alginate, agar (1.8 × 1011 cfu g−1 beads) and polyacrylamide (1.6 × 1011 cfu g−1 beads). The degradation of naphthalene was studied, by freely suspended cells (4 × 1010 cfu ml−1) and immobilized cells in batches, with shaken culture and continuous degradation in a packed-bed reactor. Free cells brought about the complete degradation of 25 mmol naphthalene after 3 days of incubation, whereas, a maximum of 30 mmol naphthalene was degraded by the bacteria after 3–4 days of incubation with 50 mmol and 75 mmol naphthalene, and no further degradation was observed even after 15 days of incubation. Alginate-entrapped cells had degraded 25 mmol naphthalene after 3.5 days of incubation, whereas agar- and polyacrylamide-entrapped cells took 2.5 days; 50 mmol naphthalene was completely degraded by the immobilized cells after 6–7 days of incubation. Maximum amounts of 55 mmol, 70 mmol and 67 mmol naphthalene were degraded, from an initial 75 mmol naphthalene, by the alginate-, agar- and polyacrylamide-entrapped cells after 15 days of incubation. When the cell concentrations were doubled, 25 mmol and 50 mmol naphthalene were degraded after 2 and 5.5 days of incubation by the immobilized cells. Complete degradation of 75 mmol naphthalene occurred after 10 days incubation with agar- and polyacrylamide-entrapped␣cells, whereas only 60 mmol naphthalene was degraded by alginate-entrapped cells after 15 days of␣incubation. Further, with 25 mmol naphthalene, alginate-, agar- and polyacrylamide-entrapped cells (1.8 × 1011 cfu g−1 beads) could be reused 18, 12 and 23 times respectively. During continuous degradation in a packed-bed reactor, 80 mmol naphthalene 100 ml−1 h−1 was degraded by alginate- and polyacrylamide-entrapped cells whereas 80 mmol naphthalene 125 ml−1␣h−1 was degraded by agar-entrapped cells.

Detection of very low saturation constants in anaerobic digestion: Influences of calcium carbonate precipitation and pH by M. Mösche; H.-J. Jördening (pp. 793-799).
Samples taken from a fluidized-bed reactor revealed very low saturation constants for the degradation of acetate (2–12 mg/l) and propionate (<3 mg/l). The higher values for the acetate degradation appear to be caused by mass-transport limitation due to calcium carbonate precipitation within the biofilm. The intrinsic saturation constant is about 3 mg/l, which is significantly lower than previously published values for pure and mixed cultures. The influence of the pH on the saturation constant was investigated in fed-batch experiments. Contrary to the hypothesis that only the undissociated acid is the effective substrate, no significant influence of pH on the saturation constant (given as concentration of total acid) was observed. Batch experiments with n-butyrate revealed hyperbolic progress curves, which might be misinterpreted as a sign of a high saturation constant. However, fed-batch experiments showed that, for n-butyrate degradation, the saturation constant is very low. The isomerisation to isobutyrate and other side-reactions, for which indications were found, influence the progress curve such that an elevated saturation constant will result as an artifact. Thus saturation constants for n-butyrate degradation obtained from batch experiments have to be viewed critically.
Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: