|
|
Analytical and Bioanalytical Chemistry (v.383, #7-8)
Automated high-throughput nanoliter-scale protein crystallization screening
by Fenglei Li; Howard Robinson; Edward S. Yeung (pp. 1034-1041).
A highly efficient method is developed for automated high-throughput screening of nanoliter-scale protein crystallization. The system integrates liquid dispensing, crystallization and detection. The automated liquid dispensing system handles nanoliters of protein and various combinations of precipitants in parallel to access diverse regions of the phase diagram. A new detection scheme, native fluorescence, with complementary visible-light detection is employed for monitoring the progress of crystallization. This detection mode can distinguish protein crystals from inorganic crystals in a nondestructive manner. A gas-permeable membrane covering the microwells simplifies evaporation rate control and probes extended conditions in the phase diagram. The system was successfully demonstrated for the screening of lysozyme crystallization under 81 different conditions.
Keywords: Protein; Crystallization; Native fluorescence; High-throughput screening
Automated high-throughput nanoliter-scale protein crystallization screening
by Fenglei Li; Howard Robinson; Edward S. Yeung (pp. 1034-1041).
A highly efficient method is developed for automated high-throughput screening of nanoliter-scale protein crystallization. The system integrates liquid dispensing, crystallization and detection. The automated liquid dispensing system handles nanoliters of protein and various combinations of precipitants in parallel to access diverse regions of the phase diagram. A new detection scheme, native fluorescence, with complementary visible-light detection is employed for monitoring the progress of crystallization. This detection mode can distinguish protein crystals from inorganic crystals in a nondestructive manner. A gas-permeable membrane covering the microwells simplifies evaporation rate control and probes extended conditions in the phase diagram. The system was successfully demonstrated for the screening of lysozyme crystallization under 81 different conditions.
Keywords: Protein; Crystallization; Native fluorescence; High-throughput screening
The determination of total Se in urine and serum by graphite furnace atomic absorption spectrometry using Ir as permanent modifier and in situ oxidation for complete trimethylselenonium recovery
by Patricia Grinberg; Rodrigo Araújo Gonçalves; Reinaldo Calixto de Campos (pp. 1044-1051).
The present work evaluated the use of iridium (Ir) as permanent modifier for the determination of total selenium in urine and serum by graphite furnace atomic absorption spectrometry. Concerning urine, the presence of trimethylselenonium (TMSe+) was especially considered. Pyrolysis and atomization temperatures of 1,000 and 2,100°C, respectively, were used. For nondigested urine and serum samples, 0.2% v/v HNO3 and Triton X-100 were used as diluents, respectively, and the same initial platform Ir treatment was effective for up to 1,100 atomization cycles. Good precision [less than 5% relative standard deviation (RSD)] can be achieved with the proposed method. Low TMSe+ recovery was observed for nondigested urine samples. Thus, if this species is to be considered in urine analysis, a previous external mineralization step was found to be necessary. Alternatively, an in situ oxidation treatment was developed. Detection limits of 8, 10, and 7 μg l−1 were obtained after dilution, microwave-assisted digestion, and in situ oxidation procedures, respectively. The accuracy of the method was validated by the analysis of certified reference or commercial quality control materials and spiked samples.
Keywords: Graphite furnace atomic absorption spectrometry; Iridium permanent modifier; Selenium; Urine and serum; Trimethylselenonium ion
The determination of total Se in urine and serum by graphite furnace atomic absorption spectrometry using Ir as permanent modifier and in situ oxidation for complete trimethylselenonium recovery
by Patricia Grinberg; Rodrigo Araújo Gonçalves; Reinaldo Calixto de Campos (pp. 1044-1051).
The present work evaluated the use of iridium (Ir) as permanent modifier for the determination of total selenium in urine and serum by graphite furnace atomic absorption spectrometry. Concerning urine, the presence of trimethylselenonium (TMSe+) was especially considered. Pyrolysis and atomization temperatures of 1,000 and 2,100°C, respectively, were used. For nondigested urine and serum samples, 0.2% v/v HNO3 and Triton X-100 were used as diluents, respectively, and the same initial platform Ir treatment was effective for up to 1,100 atomization cycles. Good precision [less than 5% relative standard deviation (RSD)] can be achieved with the proposed method. Low TMSe+ recovery was observed for nondigested urine samples. Thus, if this species is to be considered in urine analysis, a previous external mineralization step was found to be necessary. Alternatively, an in situ oxidation treatment was developed. Detection limits of 8, 10, and 7 μg l−1 were obtained after dilution, microwave-assisted digestion, and in situ oxidation procedures, respectively. The accuracy of the method was validated by the analysis of certified reference or commercial quality control materials and spiked samples.
Keywords: Graphite furnace atomic absorption spectrometry; Iridium permanent modifier; Selenium; Urine and serum; Trimethylselenonium ion
Speciation analysis of inorganic antimony in soil using HPLC-ID-ICP-MS
by Sameer Amereih; Thomas Meisel; Elisabeth Kahr; Wolfhard Wegscheider (pp. 1052-1059).
Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 μg g−1, 0.3 μg g−1 SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L−1 citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0–500 mmol L−1), pH (1–6), and temperature (30–60°C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L−1 EDTA and 1 mmol L−1 phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) 123Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min−1) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L−1 and 65 ng L−1 for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L−1 calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.
Keywords: Antimony species; Soil; HPLC-ID-ICP-MS; Citric acid; Influence of extraction procedure
Speciation analysis of inorganic antimony in soil using HPLC-ID-ICP-MS
by Sameer Amereih; Thomas Meisel; Elisabeth Kahr; Wolfhard Wegscheider (pp. 1052-1059).
Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 μg g−1, 0.3 μg g−1 SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L−1 citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0–500 mmol L−1), pH (1–6), and temperature (30–60°C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L−1 EDTA and 1 mmol L−1 phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) 123Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min−1) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L−1 and 65 ng L−1 for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L−1 calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.
Keywords: Antimony species; Soil; HPLC-ID-ICP-MS; Citric acid; Influence of extraction procedure
Multielement trace determination in SiC powders: assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP OES and DC arc OES
by Ralf Matschat; Jürgen Haßler; Heike Traub; Angelika Dette (pp. 1060-1074).
The members of the committee NMP 264 “Chemical analysis of non-oxidic raw and basic materials” of the German Standards Institute (DIN) have organized two interlaboratory comparisons for multielement determination of trace elements in silicon carbide (SiC) powders via direct solid sampling methods. One of the interlaboratory comparisons was based on the application of inductively coupled plasma optical emission spectrometry with electrothermal vaporization (ETV ICP OES), and the other on the application of optical emission spectrometry with direct current arc (DC arc OES). The interlaboratory comparisons were organized and performed in the framework of the development of two standards related to “the determination of mass fractions of metallic impurities in powders and grain sizes of ceramic raw and basic materials” by both methods. SiC powders were used as typical examples of this category of material. The aim of the interlaboratory comparisons was to determine the repeatability and reproducibility of both analytical methods to be standardized. This was an important contribution to the practical applicability of both draft standards. Eight laboratories participated in the interlaboratory comparison with ETV ICP OES and nine in the interlaboratory comparison with DC arc OES. Ten analytes were investigated by ETV ICP OES and eleven by DC arc OES. Six different SiC powders were used for the calibration. The mass fractions of their relevant trace elements were determined after wet chemical digestion. All participants followed the analytical requirements described in the draft standards. In the calculation process, three of the calibration materials were used successively as analytical samples. This was managed in the following manner: the material that had just been used as the analytical sample was excluded from the calibration, so the five other materials were used to establish the calibration plot. The results from the interlaboratory comparisons were summarized and used to determine the repeatability and the reproducibility (expressed as standard deviations) of both methods. The calculation was carried out according to the related standard. The results are specified and discussed in this paper, as are the optimized analytical conditions determined and used by the authors of this paper. For both methods, the repeatability relative standard deviations were <25%, usually ~10%, and the reproducibility relative standard deviations were <35%, usually ~15%. These results were regarded as satifactory for both methods intended for rapid analysis of materials for which decomposition is difficult and time-consuming. Also described are some results from an interlaboratory comparison used to certify one of the materials that had been previously used for validation in both interlaboratory comparisons. Thirty laboratories (from eight countries) participated in this interlaboratory comparison for certification. As examples, accepted results are shown from laboratories that used ETV ICP OES or DC arc OES and had performed calibrations by using solutions or oxides, respectively. The certified mass fractions of the certified reference materials were also compared with the mass fractions determined in the interlaboratory comparisons performed within the framework of method standardization. Good agreement was found for most of the analytes.
Keywords: Inductively coupled plasma optical emission spectrometry with electrothermal vaporization (ETV ICP OES); Direct current optical emission spectrometry (DC arc OES); Direct solid sampling technique; Silicon carbide powder; Method validation; Method standardization
Multielement trace determination in SiC powders: assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP OES and DC arc OES
by Ralf Matschat; Jürgen Haßler; Heike Traub; Angelika Dette (pp. 1060-1074).
The members of the committee NMP 264 “Chemical analysis of non-oxidic raw and basic materials” of the German Standards Institute (DIN) have organized two interlaboratory comparisons for multielement determination of trace elements in silicon carbide (SiC) powders via direct solid sampling methods. One of the interlaboratory comparisons was based on the application of inductively coupled plasma optical emission spectrometry with electrothermal vaporization (ETV ICP OES), and the other on the application of optical emission spectrometry with direct current arc (DC arc OES). The interlaboratory comparisons were organized and performed in the framework of the development of two standards related to “the determination of mass fractions of metallic impurities in powders and grain sizes of ceramic raw and basic materials” by both methods. SiC powders were used as typical examples of this category of material. The aim of the interlaboratory comparisons was to determine the repeatability and reproducibility of both analytical methods to be standardized. This was an important contribution to the practical applicability of both draft standards. Eight laboratories participated in the interlaboratory comparison with ETV ICP OES and nine in the interlaboratory comparison with DC arc OES. Ten analytes were investigated by ETV ICP OES and eleven by DC arc OES. Six different SiC powders were used for the calibration. The mass fractions of their relevant trace elements were determined after wet chemical digestion. All participants followed the analytical requirements described in the draft standards. In the calculation process, three of the calibration materials were used successively as analytical samples. This was managed in the following manner: the material that had just been used as the analytical sample was excluded from the calibration, so the five other materials were used to establish the calibration plot. The results from the interlaboratory comparisons were summarized and used to determine the repeatability and the reproducibility (expressed as standard deviations) of both methods. The calculation was carried out according to the related standard. The results are specified and discussed in this paper, as are the optimized analytical conditions determined and used by the authors of this paper. For both methods, the repeatability relative standard deviations were <25%, usually ~10%, and the reproducibility relative standard deviations were <35%, usually ~15%. These results were regarded as satifactory for both methods intended for rapid analysis of materials for which decomposition is difficult and time-consuming. Also described are some results from an interlaboratory comparison used to certify one of the materials that had been previously used for validation in both interlaboratory comparisons. Thirty laboratories (from eight countries) participated in this interlaboratory comparison for certification. As examples, accepted results are shown from laboratories that used ETV ICP OES or DC arc OES and had performed calibrations by using solutions or oxides, respectively. The certified mass fractions of the certified reference materials were also compared with the mass fractions determined in the interlaboratory comparisons performed within the framework of method standardization. Good agreement was found for most of the analytes.
Keywords: Inductively coupled plasma optical emission spectrometry with electrothermal vaporization (ETV ICP OES); Direct current optical emission spectrometry (DC arc OES); Direct solid sampling technique; Silicon carbide powder; Method validation; Method standardization
Method for precisely analyzing the stoichiometry of NaxCoO2-type superconductor material
by Jörg Acker; Gernot Krabbes (pp. 1075-1081).
An analytical procedure for precisely determining the stoichiometry of NaxCoO2-type superconductor material is presented. Sodium and cobalt contents, ranging between 3.5 and 11 mg L−1 and 18 and 32 mg L−1, respectively, were measured simultaneously using CID–ICP–OES. Sodium was found to significantly lower the emission intensity of cobalt, so the addition of 6.4 g L−1 of the ionization buffer LiCl was required to compensate for this effect. The recoveries and precisions of the measurements were significantly increased by internal standardization using yttrium: Co(II) emission intensities at 230.786 nm, 237.862 nm, and 238.346 nm can be corrected using Y ion emission intensities, as can the atomic emissions of Co at 345.351 nm and Na at 589.592 nm. The cobalt contents of three real superconductor samples were independently verified by complexometric titration using EDTA. The valence state of cobalt was determined with a relative uncertainty of ~0.5% by redox titration using sodium oxalate as reductive agent and Ce(SO4)2 solution. The final stoichiometries of the superconductor samples can be calculated using the Na and Co contents, and the Co valence state. Conclusions about the quality of the prepared samples in terms of phase purity and presence of side products are drawn.
Keywords: ICP–OES; Superconductor; Titration; Internal standard; Easily ionized element; Precision
Method for precisely analyzing the stoichiometry of NaxCoO2-type superconductor material
by Jörg Acker; Gernot Krabbes (pp. 1075-1081).
An analytical procedure for precisely determining the stoichiometry of NaxCoO2-type superconductor material is presented. Sodium and cobalt contents, ranging between 3.5 and 11 mg L−1 and 18 and 32 mg L−1, respectively, were measured simultaneously using CID–ICP–OES. Sodium was found to significantly lower the emission intensity of cobalt, so the addition of 6.4 g L−1 of the ionization buffer LiCl was required to compensate for this effect. The recoveries and precisions of the measurements were significantly increased by internal standardization using yttrium: Co(II) emission intensities at 230.786 nm, 237.862 nm, and 238.346 nm can be corrected using Y ion emission intensities, as can the atomic emissions of Co at 345.351 nm and Na at 589.592 nm. The cobalt contents of three real superconductor samples were independently verified by complexometric titration using EDTA. The valence state of cobalt was determined with a relative uncertainty of ~0.5% by redox titration using sodium oxalate as reductive agent and Ce(SO4)2 solution. The final stoichiometries of the superconductor samples can be calculated using the Na and Co contents, and the Co valence state. Conclusions about the quality of the prepared samples in terms of phase purity and presence of side products are drawn.
Keywords: ICP–OES; Superconductor; Titration; Internal standard; Easily ionized element; Precision
Determination of organotin compounds by headspace solid-phase microextraction–gas chromatography–pulsed flame-photometric detection (HS-SPME–GC–PFPD)
by Manuel Bravo; Gaëtane Lespes; Ida De Gregori; Hugo Pinochet; Martine Potin Gautier (pp. 1082-1089).
A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 μm PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L−1 in water and close to ng (Sn) kg−1 in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME–GC–PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices.
Keywords: Organotin compounds; Solid-phase microextraction; Gas chromatography–pulsed flame photometric detection (GC–PFPD); Experimental design; Canonical analysis
Determination of organotin compounds by headspace solid-phase microextraction–gas chromatography–pulsed flame-photometric detection (HS-SPME–GC–PFPD)
by Manuel Bravo; Gaëtane Lespes; Ida De Gregori; Hugo Pinochet; Martine Potin Gautier (pp. 1082-1089).
A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 μm PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L−1 in water and close to ng (Sn) kg−1 in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME–GC–PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices.
Keywords: Organotin compounds; Solid-phase microextraction; Gas chromatography–pulsed flame photometric detection (GC–PFPD); Experimental design; Canonical analysis
Mapping and elemental fractionation of aerosols generated by laser-induced breakdown ablation
by Yuheng Chen; Valery Bulatov; Liviu Singer; Josef Stricker; Israel Schechter (pp. 1090-1097).
Laser-induced breakdown spectroscopy (LIBS) has been used to map the distribution of particulate matter inside the plume created by laser ablation of a brass target. The spatial density distribution of the different components of the plume was determined in an attempt to reveal the mechanism of fractionation in the process of the laser ablation. In this experiment two Nd:YAG pulsed lasers were used. The first beam was focused on the target to generate a plume after breakdown of the surface. The second laser was focused on the plume and generated the second breakdown. The composition of the region probed by the second beam was determined by analyzing the spectral emission from the second breakdown. By scanning the probe time and position, the temporal and spatial evolution of the laser ablative plume could be discovered. Spatial and temporal fractionation was observed in brass plume.
Keywords: Laser; LIBS; Aerosols; Plasma; Ablation
Mapping and elemental fractionation of aerosols generated by laser-induced breakdown ablation
by Yuheng Chen; Valery Bulatov; Liviu Singer; Josef Stricker; Israel Schechter (pp. 1090-1097).
Laser-induced breakdown spectroscopy (LIBS) has been used to map the distribution of particulate matter inside the plume created by laser ablation of a brass target. The spatial density distribution of the different components of the plume was determined in an attempt to reveal the mechanism of fractionation in the process of the laser ablation. In this experiment two Nd:YAG pulsed lasers were used. The first beam was focused on the target to generate a plume after breakdown of the surface. The second laser was focused on the plume and generated the second breakdown. The composition of the region probed by the second beam was determined by analyzing the spectral emission from the second breakdown. By scanning the probe time and position, the temporal and spatial evolution of the laser ablative plume could be discovered. Spatial and temporal fractionation was observed in brass plume.
Keywords: Laser; LIBS; Aerosols; Plasma; Ablation
Isolation and determination of ginsenosides in American ginseng leaves and root extracts by LC-MS
by T. Ligor; A. Ludwiczuk; T. Wolski; B. Buszewski (pp. 1098-1105).
Ginseng saponins (ginsenosides) were extracted from the root and leaves of locally cultivated American ginseng (Panax quinquefolium L.). For the isolation of compounds from plant samples three different extraction methods were utilized: accelerated solvent extraction, the ultrasound-assisted solvent extraction and mechanical shaking assisted solvent extraction. The separation of compounds was achieved with a water–acetonitrile gradient system using a C18 reversed-phase column. Target compounds were identified in MS2 and MS3 experiments. The relative distribution of these ginsenosides in each root and leaf extract was established. The limit of detection of the method was less than 30 ng/ml. Recovery of ginseng saponins in spiked samples exceeded 80%, while the relative standard deviation ranged from 7.1 to 9.1%. The total concentrations of ginsenosides were 41 and 13 mg/g in root and leaves.
Keywords: American ginseng; Leaves; Extraction; Liquid chromatography/mass spectrometry
Isolation and determination of ginsenosides in American ginseng leaves and root extracts by LC-MS
by T. Ligor; A. Ludwiczuk; T. Wolski; B. Buszewski (pp. 1098-1105).
Ginseng saponins (ginsenosides) were extracted from the root and leaves of locally cultivated American ginseng (Panax quinquefolium L.). For the isolation of compounds from plant samples three different extraction methods were utilized: accelerated solvent extraction, the ultrasound-assisted solvent extraction and mechanical shaking assisted solvent extraction. The separation of compounds was achieved with a water–acetonitrile gradient system using a C18 reversed-phase column. Target compounds were identified in MS2 and MS3 experiments. The relative distribution of these ginsenosides in each root and leaf extract was established. The limit of detection of the method was less than 30 ng/ml. Recovery of ginseng saponins in spiked samples exceeded 80%, while the relative standard deviation ranged from 7.1 to 9.1%. The total concentrations of ginsenosides were 41 and 13 mg/g in root and leaves.
Keywords: American ginseng; Leaves; Extraction; Liquid chromatography/mass spectrometry
Determination of multiclass pesticides in food commodities by pressurized liquid extraction using GC–MS/MS and LC–MS/MS
by A. Garrido Frenich; I. Martínez Salvador; J. L. Martínez Vidal; T. López-López (pp. 1106-1118).
Pressurized liquid extraction (PLE) was applied to the simultaneous extraction of a wide range of pesticides from food commodities. Extractions were performed by mixing 4 g of sample with 4 g of Hydromatrix and (after optimization) a mixture of ethyl acetate:acetone (3:1, v/v) as extraction solvent, a temperature of 100°C, a pressure of 1000 psi and a static extraction time of 5 min. After extraction, the more polar compounds were analyzed by liquid chromatography (LC), and the apolar and semipolar pesticides by gas chromatography (GC); in both cases LC and GC were coupled with mass spectrometry in tandem (MS/MS) mode. The overall method (including the PLE step) was validated in GC and LC according to the criteria of the SANCO Document of the European Commission. The average extraction recoveries (at two concentration levels) for most of the analytes were in the range 70–80%, with precision values usually lower than 15%. Limits of quantification (LOQ) were low enough to determine the pesticide residues at concentrations below or equal to the maximum residue levels (MRL) specified by legislation. In order to assess its applicability to the analysis of real samples, aliquots of 15 vegetable samples were processed using a conventional extraction method with dichloromethane, and the results obtained were compared with the proposed PLE method; differences lower than 0.01 mg kg−1 were found.
Keywords: Pressurized liquid extraction; Gas chromatography; Liquid chromatography; Tandem MS; Pesticides
Determination of multiclass pesticides in food commodities by pressurized liquid extraction using GC–MS/MS and LC–MS/MS
by A. Garrido Frenich; I. Martínez Salvador; J. L. Martínez Vidal; T. López-López (pp. 1106-1118).
Pressurized liquid extraction (PLE) was applied to the simultaneous extraction of a wide range of pesticides from food commodities. Extractions were performed by mixing 4 g of sample with 4 g of Hydromatrix and (after optimization) a mixture of ethyl acetate:acetone (3:1, v/v) as extraction solvent, a temperature of 100°C, a pressure of 1000 psi and a static extraction time of 5 min. After extraction, the more polar compounds were analyzed by liquid chromatography (LC), and the apolar and semipolar pesticides by gas chromatography (GC); in both cases LC and GC were coupled with mass spectrometry in tandem (MS/MS) mode. The overall method (including the PLE step) was validated in GC and LC according to the criteria of the SANCO Document of the European Commission. The average extraction recoveries (at two concentration levels) for most of the analytes were in the range 70–80%, with precision values usually lower than 15%. Limits of quantification (LOQ) were low enough to determine the pesticide residues at concentrations below or equal to the maximum residue levels (MRL) specified by legislation. In order to assess its applicability to the analysis of real samples, aliquots of 15 vegetable samples were processed using a conventional extraction method with dichloromethane, and the results obtained were compared with the proposed PLE method; differences lower than 0.01 mg kg−1 were found.
Keywords: Pressurized liquid extraction; Gas chromatography; Liquid chromatography; Tandem MS; Pesticides
Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine
by P. Canosa; S. Morales; I. Rodríguez; E. Rubí; R. Cela; M. Gómez (pp. 1119-1126).
The degradation of 2-(2,4-dichlorophenoxy)-5-chlorophenol (triclosan) in chlorinated water samples was investigated. Sensitive determination of the parent compound and its transformation products was achieved by gas chromatography with mass spectrometry detection after sample concentration, using a solid-phase extraction sorbent and silylation of the target compounds. Experiments were accomplished using ultrapure water spiked with chlorine and triclosan concentrations in the low mg/l and ng/ml ranges respectively. Chlorination of the phenolic ring and cleavage of the ether bond were identified as the main triclosan degradation pathways. Both processes led to the production of two tetra- and a penta-chlorinated hydroxylated diphenyl ether, as well as 2,4-dichlorophenol. The formation of 2,3,4-trichlorophenol was not detected in any experiment; however, significant amounts of 2,4,6-trichlorophenol were noticed. All of these five compounds were also identified when triclosan was added to tap-water samples with free chlorine concentrations below 1 mg/l. Minor amounts of three di-hydroxylated phenols, containing from one to three atoms of chlorine in their structures, were also identified as unstable triclosan chlorination by-products. The analysis of several raw wastewater samples showed the co-existence of important concentrations of triclosan and its most stable by-products (2,4-dichlorophenol and 2,4,6-trichlorophenol), reinforcing the potential occurrence of the described transformations when products containing triclosan are mixed with chlorinated tap water.
Keywords: Triclosan; Chlorination by-products; Chlorophenols; SPE; GC-MS
Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine
by P. Canosa; S. Morales; I. Rodríguez; E. Rubí; R. Cela; M. Gómez (pp. 1119-1126).
The degradation of 2-(2,4-dichlorophenoxy)-5-chlorophenol (triclosan) in chlorinated water samples was investigated. Sensitive determination of the parent compound and its transformation products was achieved by gas chromatography with mass spectrometry detection after sample concentration, using a solid-phase extraction sorbent and silylation of the target compounds. Experiments were accomplished using ultrapure water spiked with chlorine and triclosan concentrations in the low mg/l and ng/ml ranges respectively. Chlorination of the phenolic ring and cleavage of the ether bond were identified as the main triclosan degradation pathways. Both processes led to the production of two tetra- and a penta-chlorinated hydroxylated diphenyl ether, as well as 2,4-dichlorophenol. The formation of 2,3,4-trichlorophenol was not detected in any experiment; however, significant amounts of 2,4,6-trichlorophenol were noticed. All of these five compounds were also identified when triclosan was added to tap-water samples with free chlorine concentrations below 1 mg/l. Minor amounts of three di-hydroxylated phenols, containing from one to three atoms of chlorine in their structures, were also identified as unstable triclosan chlorination by-products. The analysis of several raw wastewater samples showed the co-existence of important concentrations of triclosan and its most stable by-products (2,4-dichlorophenol and 2,4,6-trichlorophenol), reinforcing the potential occurrence of the described transformations when products containing triclosan are mixed with chlorinated tap water.
Keywords: Triclosan; Chlorination by-products; Chlorophenols; SPE; GC-MS
Reagentless biosensor for phenolic compounds based on tyrosinase entrapped within gelatine film
by Nan Li; Min-Hua Xue; Hui Yao; Jun-Jie Zhu (pp. 1127-1132).
A simple and new reagentless phenolic compound biosensor was constructed with tyrosinase immobilized in the gelatine matrix cross-linked with formaldehyde. The morphologies of gelatine and gelatine/tryosinase were characterized by SEM. The tyrosinase retains its bioactivity when being immobilized by the gelatine film. Phenolic compounds were determined by the direct reduction of biocatalytically liberated quinone at -0.1 V vs SCE. The process parameters for the fabrication of the enzyme electrode were studied. Optimization of the experimental parameters has been performed with regard to pH, operating potential, temperature and storage stability. This biosensor exhibits a fast amperometric response to phenolic compounds. The linear range for catechol, phenol, and p-Cresol determination was from 5×10−8 to 1.4×10−4 M, 5×10−8 to 7.1×10−5 M, and 1×10−7 to 3.6×10−5 M, with a detection limit of 2.1×10−8 M, 1.5×10−8 M, and 7.1×10−8 M, respectively. The enzyme electrode retained ca.77% of its activity after 7 days of storage at 4°C in a dry state. The proposed sensor presented good repeatability, evaluated in terms of relative standard deviation (R.S.D.=8.6%) for eight different biosensors and was applied for determination in water sample. The recovery for the sample was from 99.0% to 99.8%.
Keywords: Tyrosinase; Phenolic compounds; Biosensor; Gelatine
Reagentless biosensor for phenolic compounds based on tyrosinase entrapped within gelatine film
by Nan Li; Min-Hua Xue; Hui Yao; Jun-Jie Zhu (pp. 1127-1132).
A simple and new reagentless phenolic compound biosensor was constructed with tyrosinase immobilized in the gelatine matrix cross-linked with formaldehyde. The morphologies of gelatine and gelatine/tryosinase were characterized by SEM. The tyrosinase retains its bioactivity when being immobilized by the gelatine film. Phenolic compounds were determined by the direct reduction of biocatalytically liberated quinone at -0.1 V vs SCE. The process parameters for the fabrication of the enzyme electrode were studied. Optimization of the experimental parameters has been performed with regard to pH, operating potential, temperature and storage stability. This biosensor exhibits a fast amperometric response to phenolic compounds. The linear range for catechol, phenol, and p-Cresol determination was from 5×10−8 to 1.4×10−4 M, 5×10−8 to 7.1×10−5 M, and 1×10−7 to 3.6×10−5 M, with a detection limit of 2.1×10−8 M, 1.5×10−8 M, and 7.1×10−8 M, respectively. The enzyme electrode retained ca.77% of its activity after 7 days of storage at 4°C in a dry state. The proposed sensor presented good repeatability, evaluated in terms of relative standard deviation (R.S.D.=8.6%) for eight different biosensors and was applied for determination in water sample. The recovery for the sample was from 99.0% to 99.8%.
Keywords: Tyrosinase; Phenolic compounds; Biosensor; Gelatine
|
|