|
|
Archives of Toxicology (v.86, #4)
Zinc and human health: an update
by Christos T. Chasapis; Ariadni C. Loutsidou; Chara A. Spiliopoulou; Maria E. Stefanidou (pp. 521-534).
The importance of micronutrients in health and nutrition is undisputable, and among them, zinc is an essential element whose significance to health is increasingly appreciated and whose deficiency may play an important role in the appearance of diseases. Zinc is one of the most important trace elements in the organism, with three major biological roles, as catalyst, structural, and regulatory ion. Zinc-binding motifs are found in many proteins encoded by the human genome physiologically, and free zinc is mainly regulated at the single-cell level. Zinc has critical effect in homeostasis, in immune function, in oxidative stress, in apoptosis, and in aging, and significant disorders of great public health interest are associated with zinc deficiency. In many chronic diseases, including atherosclerosis, several malignancies, neurological disorders, autoimmune diseases, aging, age-related degenerative diseases, and Wilson’s disease, the concurrent zinc deficiency may complicate the clinical features, affect adversely immunological status, increase oxidative stress, and lead to the generation of inflammatory cytokines. In these diseases, oxidative stress and chronic inflammation may play important causative roles. It is therefore important that status of zinc is assessed in any case and zinc deficiency is corrected, since the unique properties of zinc may have significant therapeutic benefits in these diseases. In the present paper, we review the zinc as a multipurpose trace element, its biological role in homeostasis, proliferation and apoptosis and its role in immunity and in chronic diseases, such as cancer, diabetes, depression, Wilson’s disease, Alzheimer’s disease, and other age-related diseases.
Keywords: Zinc; Health; Zinc biology; Metallothioneins; Oxidative stress; Apoptosis; Immune response
Biological monitoring of carcinogens: current status and perspectives
by Sofia Pavanello; Marcello Lotti (pp. 535-541).
Biomonitoring exposures to carcinogens is common practice and a variety of biomarkers have been developed to assess both exposures and biochemical/biological effects. However, their clinical and preventive relevance is still uncertain. The understanding of cancer as a genetic disease has dramatically evolved during last decades, showing that cancer cell types acquire their characteristics with different strategies, time frames and microenvironments. Therefore, the place of current biomarkers within this complex scenario of gene–environment interactions leading to cancer cannot be defined. Reasons are manifold. Most studies assessed cancer risk on a group basis through snapshots taken at unknown time-points of the postulated chain of events. Little attention has been paid to the variety and variability of exposures, and no prospective study validated the indicators of biochemical/biological effects. New opportunities and suggestions for biomonitoring exposures to carcinogens could derive from exploring the exposome that combines exposures from all sources both external and internal. The discovery of new biomarkers and the identification of relevant gene-specific pathways could be achieved through metabolomic and genome-wide studies. In conclusion, it is possible to envisage personalized biomonitoring procedures, such as those already implemented in the context of nutrition and clinical oncology.
Keywords: Carcinogens; Biomonitoring; Exposures; Effects; Susceptibility; Personalized medicine
Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats
by Niels Hadrup; Katrin Loeschner; Anders Bergström; Andrea Wilcks; Xueyun Gao; Ulla Vogel; Henrik L. Frandsen; Erik H. Larsen; Henrik R. Lam; Alicja Mortensen (pp. 543-551).
Subacute toxicity of 14 nm nanoparticulate silver (Ag-NP) stabilised with polyvinylpyrrolidone and ionic silver in the form of silver acetate (Ag-acetate) was investigated in four-week-old Wistar rats. Animals received orally by gavage the following: vehicle control (10 ♀, 6 ♂); Ag-NP at doses: 2.25 (8 ♀), 4.5 (8 ♀) or 9 mg/kg bw/day (10 ♀, 6 ♂); or Ag-acetate 9 mg silver/kg bw/day (8 ♀) for 28 days. Clinical, haematolological and biochemical parameters, organ weights, macro- and microscopic pathological changes were investigated. Caecal bacterial phyla and their silver resistance genes were quantified. For the Ag-NP groups, no toxicological effects were recorded. For Ag-acetate, lower body weight gain (day 4–7, 11–14, 14–16, P < 0.05; overall, day 1–28, P < 0.01), increased plasma alkaline phosphatase (P < 0.05), decreased plasma urea (P < 0.05) and lower absolute (P < 0.01) and relative (P < 0.05) thymus weight were recorded. In conclusion, these findings indicate toxicity of 9 mg/kg bw/day ionic silver but not of an equimolar Ag-NP dose. This is in accordance with previously reported data showing that oral Ag-acetate, in comparison with an equimolar dose of Ag-NP, resulted in higher silver plasma and organ concentrations.
Keywords: Silver; Nanoparticle; Toxicology; Rat; Subacute
Toxicogenomic comparison of multi-wall carbon nanotubes (MWCNTs) and asbestos
by Jin Sik Kim; Kyung Seuk Song; Jin Kyu Lee; Young C. Choi; In Seok Bang; Chang Soo Kang; Il Je Yu (pp. 553-562).
Carbon nanotubes (CNTs) have specific properties, including electrical and thermal conductivity, great strength, and rigidity, that allow them to be used in many fields. However, this increasing contact with humans and the environment is also raising health and safety concerns. Thus, research on the safety of CNTs has attracted much interest, including a comparison of the toxic effects of asbestos and carbon nanotubes, due to their physical similarity of a high aspect ratio (length/diameter). Nonetheless, there has not yet been a toxicogenomic comparison. Therefore, to examine toxicogenomic effects, the 50% growth inhibition (GI50) concentration was determined for multi-wall carbon nanotubes (MWCNTs) and asbestos (crocidolite) and found to be approximately 0.0135 and 0.066%, respectively, in the case of 24-h treatment of normal human bronchial epithelia (NHBE) cells. Using these GI50 concentrations, NHBE cells were then treated with MWCNTs and asbestos for 6 and 24 h, followed by a DNA microarray analysis. Among 31,647 genes, 1,201 and 1,252 were up-regulated by both asbestos and MWCNTs after 6 and 24 h of exposure, respectively. Meanwhile, 1,977 and 1,542 genes were down-regulated by both asbestos and MWNCTs after 6 and 24 h of exposure, respectively. In particular, the asbestos and MWCNTs both induced an over twofold up- and down-regulated expression of 12 mesothelioma-related genes and 22 lung cancer-related genes when compared with the negative control. Plus, the genes induced by the MWCNT exposure were expressed in the brain, lungs, epithelium, liver, and colon.
Keywords: Carbon nanotubes (CNTs); Toxicogenomics; Multi-wall carbon nanotubes (MWCNTs); Asbestos (crocidolite); Mesothelioma; Lung cancer
Differences in metabolite burden of di(2-ethylhexyl)phthalate in pregnant and postpartum dams and their offspring in relation to drug-metabolizing enzymes in mice
by Yumi Hayashi; Yuki Ito; Yukie Yanagiba; Michihiro Kamijima; Hisao Naito; Tamie Nakajima (pp. 563-569).
Di(2-ethylhexyl)phthalate (DEHP) induced adverse effects on mice offspring, and the metabolite mono(2-ethylhexyl)phthalate (MEHP) may be essential to determine the toxicity. In this experiment, we measured liver MEHP levels and the factors determining the metabolism, two enzyme activities [lipase and uridine 5′-diphosphate-glucuronosyltransferase (UGT)] or expression of cytochrome P450 4A14 (CYP4A14) in dams (on gestational day 18 and postnatal day 2) and their offspring. MEHP concentrations in the liver from pregnant dams were 1.5 times higher than those of postpartum dams at exposure to 0.05% DEHP. Accordingly, MEHP concentrations were 1.7 times higher in fetuses than in pups at the dose. Interestingly, lipase activity was 1.8-fold higher in pregnant dams than postpartum ones, but no such difference was noted in the activity between fetuses and pups. UGT activity was also 1.5-fold higher in pregnant dams than postpartum ones, whereas the activity in the fetuses was 1/2 that of pups. No difference was noted in CYP4A14 levels between pregnant and postpartum mice, whereas the levels in the fetuses were <1/10 those of pups. DEHP exposure did not influence lipase activity, whereas it slightly enhanced UGT activity and exclusively increased CYP4A14 levels in pregnant and/or postpartum dams. Taken together, the higher MEHP levels in pregnant dams than postpartum ones may be primarily due to higher lipase activities in pregnant dams, which may closely reflect those in fetuses and pups.
Keywords: Di(2-ethylhexyl)phthalate; Lipase; UDP-glucuronyl transferase (UGT); Cytochrome P450 4A; Pregnant
Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model
by Paul Jennings; Christina Weiland; Alice Limonciel; Katarzyna M. Bloch; Robert Radford; Lydia Aschauer; Tara McMorrow; Anja Wilmes; Walter Pfaller; Hans J. Ahr; Craig Slattery; Edward A. Lock; Michael P. Ryan; Heidrun Ellinger-Ziegelbauer (pp. 571-589).
Ochratoxin A (OTA) is a widely studied compound due to its role in renal toxicity and carcinogenicity. However, there is still no consensus on the exact mechanisms of toxicity or carcinogenicity. In the current study, we analysed the effect of OTA on three human renal proximal tubular models (human primary, RPTEC/TERT1 and HK-2 cells) and two rat renal proximal tubular models (rat primary and NRK-52E cells). Global transcriptomics analysis at two exposure times was performed to generate a set of 756 OTA sensitive genes. This gene set was then compared in more detail across all models and additionally to a rat in vivo renal cortex model. The results demonstrate a well-conserved response across all models. OTA resulted in deregulation of a number of pathways including cytoskeleton, nucleosome regulation, translation, transcription, ubiquitination and cell cycle pathways. Interestingly, the oxidative stress activated Nrf2 pathway was not enriched. These results point to an epigenetic action of OTA, perhaps initiated by actin binding as the actin remodelling gene, advillin was the highest up-regulated in all models. The largest model differences were observed between the human and the rat in vitro models. However, since the human in vitro models were more similar to the rat in vivo model, it is more likely that these differences are model-specific rather than species-specific per se. This study demonstrates the usefulness of in vitro cell culture models combined with transcriptomic analysis for the investigation of mechanisms of toxicity and carcinogenicity. In addition, these results provide further evidence supporting a non-genotoxic mechanism of OTA-induced carcinogenicity.
Keywords: OTA; Advillin; Carcinogenicity; Renal proximal tubule; Transcriptomics
Cadmium modulates expression of aryl hydrocarbon receptor-associated genes in rat uterus by interaction with the estrogen receptor
by Felix M. Kluxen; Nicola Höfer; Georg Kretzschmar; Gisela H. Degen; Patrick Diel (pp. 591-601).
Estrogen-like effects of the heavy metal cadmium have been reported in both in vitro and in vivo studies. Yet, the molecular mechanisms involved in the hormonal activity of cadmium ions have not been fully elucidated. There are extensive data on cross-talk between aryl hydrocarbon receptor (AhR) and estrogen receptor (ER). Recently, 17β-estradiol (E2) was found to modulate the expression of AhR and AhR-regulated genes in rat uterus (Kretzschmar et al. in Mol Cell Endocrinol 321:253–257, 2010). Thus, we hypothesized that cadmium may also affect AhR signaling and examined whether cadmium or E2 modulate AhR-associated genes via the ER in rat uterus. Ovariectomized Wistar rats received E2 (0.5 mg/kg bw) or cadmium chloride (0.05 and 2 mg/kg bw i.p.) alone and in combination with the pure anti-estrogen ZK191703. We also co-treated a group with E2 and cadmium 2 mg/kg bw to assess how they act in concert. Uterus wet weight, uterus epithelial height, complement C3 mRNA, and progesterone receptor (PR) protein expression served as estrogen response parameters, and expression of Mt1a mRNA was analyzed as a cadmium responsive gene. The expression of AhR protein and AhR-associated gene expression, i.e., Ahr, Arnt1, Arnt2, Cyp1a1, and Gsta2, were analyzed to examine effects on AhR-mediated signaling pathways in the uterus of all groups. Both, E2 and cadmium induced C3 and PR expression, and this was antagonized by ZK191703. Mt1a expression was clearly induced by cadmium but slightly reduced by E2 compared to controls. Uterine Ahr, Arnt1, Arnt2, and Cyp1a1 expression was modulated by E2 via the ER since down-regulation by E2 was reversed by anti-estrogen. Cadmium apparently also modulated Cyp1a1 expression via the ER. Furthermore, cadmium-induced AhR was antagonized by E2, and anti-estrogen-induced Gsta2 expression was antagonized by cadmium. Together our findings provide evidence for cross-talk of ER and AhR in the rat uterus.
Keywords: Arylhydrocarbon receptor; Cadmium; Endocrine modulation; Estrogens
Dimethoxycurcumin-induced cell death in human breast carcinoma MCF7 cells: evidence for pro-oxidant activity, mitochondrial dysfunction, and apoptosis
by A. Kunwar; S. Jayakumar; A. K. Srivastava; K. I. Priyadarsini (pp. 603-614).
The factors responsible for the induction of cell death by dimethoxycurcumin (Dimc), a synthetic analog of curcumin, were assessed in human breast carcinoma MCF7 cells. Initial cytotoxic studies with both curcumin and Dimc using MTT assay indicated their comparable effects. Further, the mechanism of action was explored in terms of oxidative stress, mitochondrial dysfunction, and modulation in the expression of proteins involved in cell cycle regulation and apoptosis. Dimc (5–50 μM) caused generation of reactive oxygen species, reduction in glutathione level, and induction of DNA damage. The mitochondrial dysfunction induced by Dimc was evidenced by the reduction in mitochondrial membrane potential and decrease in cellular energy status (ATP/ADP) monitored by HPLC analysis. The observed decrease in ATP was also supported by the significant suppression of different (α, β, γ, and ε) subunits of ATP synthase. The cytotoxic effect of Dimc was further characterized in terms of induction of S-phase cell cycle arrest and apoptosis, and their relative contribution was found to vary with the treatment concentration of Dimc. The S-phase arrest and apoptosis could also be correlated with the changes in the expressions of cell cycle proteins like p53, p21, CDK4, and cyclin-D1 and apoptotic markers like Bax and Bcl-2. Overall, the results demonstrated that Dimc induced cell death in MCF7 cells through S-phase arrest and apoptosis.
Keywords: Dimethoxycurcumin; Oxidative stress; Mitochondrial dysfunction; Apoptosis; Cell cycle arrest
Mechanism of ziram-induced apoptosis in human T lymphocytes
by Qing Li; Maiko Kobayashi; Tomoyuki Kawada (pp. 615-623).
Ziram as a dithiocarbamate fungicide is widely used throughout the world in agriculture. We previously found that ziram significantly inhibited cytotoxic T lymphocyte activity in a dose-dependent manner. To explore the mechanism of this inhibition, we investigated ziram-induced apoptosis in human T lymphocytes. Jurkat T cells were treated with ziram at 0.031–1 μM for 2–24 h. Freshly isolated primary human T cells were treated with ziram at 0.0625–1 μM for 15 and 24 h. Apoptosis was determined by FITC-Annexin V/PI staining and the TUNEL assay. To explore the mechanism of apoptosis, intracellular levels of active caspases 3, 3/7, 8, and 9 and pan-caspase and mitochondrial cytochrome-c release were determined by flow cytometry. Disruption to mitochondrial transmembrane potential was determined with a MitoLight™ Apoptosis Detection Kit. We found that ziram induced apoptosis in a time- and dose-dependent manner in both Jurkat cells and primary human T cells. The primary human T cells were more sensitive to ziram than the Jurkat cell line. Ziram induced increases in active caspases 3, 3/7, 8, and 9 and pan-caspase in a dose-dependent manner, and a caspase-3 inhibitor, Z-DEVD-FMK, partially but significantly inhibited the apoptosis. Moreover, a general caspase inhibitor, Z-VAD-FMK, significantly and almost completely blocked the apoptosis. Ziram also disrupted mitochondrial transmembrane potential and caused mitochondrial cytochrome-c release. These findings indicate that ziram can induce apoptosis in human T cells, and the apoptosis is mediated by both the caspase-cascade and the mitochondria/cytochrome-c pathways.
Keywords: Annexin V; Apoptosis; Caspase; Cytochrome-c; Jurkat T cell; Mitochondria; TUNEL; Ziram
The Alternaria mycotoxins alternariol and alternariol methyl ether induce cytochrome P450 1A1 and apoptosis in murine hepatoma cells dependent on the aryl hydrocarbon receptor
by Ilona Schreck; Ute Deigendesch; Britta Burkhardt; Doris Marko; Carsten Weiss (pp. 625-632).
The Alternaria mycotoxins alternariol (AOH) and alternariol methyl ether (AME) are potential carcinogens. As planar compounds, AOH and AME are preferentially metabolized by cytochrome P450 (CYP) 1A1 and 1A2. The most prominent regulator of CYP1A1 is the dimeric transcription factor complex AhR/ARNT, which is activated by planar ligands. Therefore, we studied the activation of AhR/ARNT by AOH and AME and monitored CYP1A1 induction in murine hepatoma cells (Hepa-1c1c7). Indeed, AOH and AME enhanced the levels of CYP1A1 in Hepa-1c1c7 cells but not in cells with inactivated AhR (Hepa-1c1c12) or ARNT (Hepa-1c1c4). AOH and AME did not increase the production of reactive oxygen species but reduced cell counts in Hepa-1c1c7 cells after 24 and 48 h. This effect, however, was independent of AhR/ARNT. At 48 h, AOH and AME increased apoptosis dependent on AhR and ARNT. In conclusion, AOH and AME are novel inducers of the AhR/ARNT pathway, which mediates induction of CYP1A1 and apoptosis and might thereby contribute to the toxicity of these mycotoxins.
Keywords: Aryl hydrocarbon receptor; Mycotoxins; Alternaria alternata ; Alternariol; Alternariol methyl ether
Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells
by Kathleen A. Mattingly; Carolyn M. Klinge (pp. 633-642).
Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17β-estradiol (E2), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E2, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E2 increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects.
Keywords: Endothelial cells; Diesel exhaust; Diesel exhaust particles; NRF-1, Mitochondrial activity, Resveratrol
Mouse hepatoma cell lines differing in aryl hydrocarbon receptor-mediated signaling have different activities for glucuronidation
by B. Burkhardt; S. A. Jung; E. Pfeiffer; C. Weiss; M. Metzler (pp. 643-649).
For studies on the aryl hydrocarbon receptor (AhR)-dependent toxicity of the mycotoxins alternariol (AOH) and alternariol methyl ether (AME), three mouse hepatoma (Hepa-1) cell lines with intact and with compromised AhR signaling were compared with respect to their activities for hydroxylation, methylation, and glucuronidation. Whereas the activities of cytochrome P450-mediated monooxygenase and catechol-O-methyl transferase were very low and did not differ between the three cell lines, a pronounced difference was observed for UDP-glucuronosyl transferase activity, which was much higher in Hepa-1c1c4 than in c1c7 and c1c12 cells. In all three cell types, the rate of glucuronidation of AOH was about four times higher than that of AME. Whereas AME caused a concentration-dependent G2/M arrest in each cell line, AOH arrested Hepa-1c1c7 and c1c12 cells but not c1c4 cells. However, Hepa-1c1c4 cells were arrested by AOH when β-glucuronidase was added to the incubation medium in order to reverse the formation of AOH glucuronides. We conclude that the failure of AOH to cause cell cycle inhibition in Hepa-1c1c4 cells is due to its efficient glucuronidation. The considerable UDP-glucuronosyl transferase activity of Hepa-1c1c4 cells should be taken into account when other compounds are studied in this cell line. Moreover, we demonstrate that differences in glucuronide formation between cell types can be overcome by the addition of β-glucuronidase to the cell culture medium.
Keywords: Alternariol; Alternariol methyl ether; Mouse hepatoma cells; Glucuronidation; Metabolic activity
Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells
by Rajarshi Pal; Murali Krishna Mamidi; Anjan Kumar Das; Ramesh Bhonde (pp. 651-661).
In vitro disease modeling using pluripotent stem cells can be a fast track screening tool for toxicological testing of candidate drug molecules. Dimethyl sulfoxide (DMSO) is one of the most commonly used solvents in drug screening. In the present investigation, we exposed 14- to 21-day-old embryoid bodies (EBs) to three different concentrations of DMSO [0.01% (low dose), 0.1% (medium dose) and 1.0% (high dose)] to identify the safest dose that could effectively be used as solvent. We found that DMSO treatment substantially altered the morphology and attachment of cells in concurrence with a significant reduction in cell viability in a dose-dependent manner. Gene expression studies revealed a selective downregulation of key markers associated with stemness (Oct-4, Sox-2, Nanog and Rex-1); ectoderm (Nestin, TuJ1, NEFH and Keratin-15); mesoderm (HAND-1, MEF-2C, GATA-4 and cardiac-actin); and endoderm (SOX-17, HNF-3β, GATA-6 and albumin), indicating an aberrant and untimely differentiation trajectory. Furthermore, immunocytochemistry, flow cytometry and histological analyses demonstrated substantial decrease in the levels of albumin and CK-18 proteins coupled with a massive reduction in the number of cells positive for PAS staining, implicating reduced deposits of glycogen. Our study advocates for the first time that DMSO exposure not only affects the phenotypic characteristics but also induces significant alteration in gene expression, protein content and functionality of the differentiated hepatic cells. Overall, our experiments warrant that hESC-based assays can provide timely alerts about the outcome of widespread applications of DMSO as drug solvent, cryoprotectant and differentiating agent.
Keywords: Pluripotent stem cells; Embryoid bodies; Differentiation; Drug solvent; Toxicity
Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression
by Marco Aurelio Romano; Renata Marino Romano; Luciana Dalazen Santos; Patricia Wisniewski; Daniele Antonelo Campos; Paula Bargi de Souza; Priscila Viau; Maria Martha Bernardi; Maria Tereza Nunes; Claudio Alvarenga de Oliveira (pp. 663-673).
Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.
Keywords: Glyphosate; Endocrine disruptor; Sexual brain differentiation; Sperm production; Gonadotropins; Gonadal steroids
Differential genotoxic effects of subchronic exposure to ethyl tertiary butyl ether in the livers of Aldh2 knockout and wild-type mice
by Zuquan Weng; Megumi Suda; Katsumi Ohtani; Nan Mei; Toshihiro Kawamoto; Tamie Nakajima; Rui-Sheng Wang (pp. 675-682).
Ethyl tertiary butyl ether (ETBE) is used as an additive to gasoline to reduce carbon monoxide emissions in some developed countries. So far, ETBE was not found with positive results in many genotoxic assays. This study is undertaken to investigate the modifying effects of deficiency of aldehyde dehydrogenase 2 (ALDH2) on the toxicity of ETBE in the livers of mice. Eight-week-old wild-type (WT) and Aldh2 knockout (KO) C57BL/6 mice of both sexes were exposed to 0, 500, 1,750, and 5,000 ppm ETBE for 6 h/day with 5 days per weeks for 13 weeks. Histopathology assessments and measurements of genetic effects in the livers were performed. Significantly increased accidences of centrilobular hypertrophy were observed in the livers of WT and KO mice of both sexes in 5,000 ppm group; there was a sex difference in centrilobular hypertrophy between male and female KO mice, with more severe damage in the males. In addition, DNA strand breaks, 8-hydroxyguanine DNA-glycosylase (hOGG1)-modified oxidative base modification, and 8-hydroxydeoxyguanosine as genetic damage endpoints were significantly increased in three exposure groups in KO male mice, while these genotoxic effects were only found in 5,000 ppm group of KO female mice. In WT mice, significant DNA damage was seen in 5,000 ppm group of male mice, but not in females. Thus, sex differences in DNA damage were found not only in KO mice, but also in WT mice. These results suggest that ALDH2 polymorphisms and sex should be taken into considerations in predicting human health effects of ETBE exposure.
Keywords: ETBE; Genotoxic effect; Liver; Aldh2 knockout mice
|
|