| Check out our New Publishers' Select for Free Articles |
Archives of Microbiology (v.187, #4)
Functional expression of Escherichia coli fhuA gene in Rhizobium spp. of Cajanus cajan provides growth advantage in presence of Fe3+: ferrichrome as iron source by Geetha Rajendran; Shreni Mistry; Anjana J. Desai; G. Archana (pp. 257-264).
Cajanus cajan rhizobial isolates were found to be unable to utilize iron bound to ferrichrome, desferrioxamine B or rhodotorulic acid, all being hydroxamate type siderophores. A broad host range expression vector containing the Escherichia coli fhuA gene, encoding the outer membrane receptor for Fe-ferrichrome, was constructed. The plasmid construct (pGR1), designed to express fhuA under the lac promoter of E. coli, complemented E. coli MB97 ΔfhuA mutant for ferri-ferrichrome utilization and also allowed Rhizobium spp. ST1 and Rhizobium spp. IC3123 to grow using iron bound to ferrichrome. Sensitivity to the antibiotic albomycin, transported via the FhuA receptor, was found in case of MB97 as well as rhizobial transformants harboring pGR1. The rhizobial transformants expressing fhuA showed growth stimulation when co-inoculated with Ustilago maydis, a fungal species known to produce ferrichrome under iron starved conditions. Growth stimulation was also observed in the presence of externally supplied ferrichrome. The significance of these findings in terms of the potential for improving the survivability of rhizobial bioinoculant strains in natural soils is discussed.
Keywords: Rhizobium spp.; Ferrichrome uptake; E. coli fhuA gene; Heterologous gene expression; Cajanus cajan ; Siderophore utilization
Growth-phase dependent differential gene expression in Synechocystis sp. strain PCC 6803 and regulation by a group 2 sigma factor by Jamie S. Foster; Abhay K. Singh; Lynn J. Rothschild; Louis A. Sherman (pp. 265-279).
Cyanobacteria must continually alter their physiological growth state in response to changes in light intensity and their nutritional and physical environment. Under typical laboratory batch growth conditions, cyanobacteria grow exponentially, then transition to a light-limited stage of linear growth before finally reaching a non-growth stationary phase. In this study, we utilized DNA microarrays to profile the expression of genes in the cyanobacterium Synechocystis sp. PCC 6803 to compare exponential and linear growth. We also studied the importance of SigB, a group 2 sigma factor in this cyanobacterium, during the different growth phases. The transcription of approximately 10% of the genes in the wild type were different in the linear, compared to the exponential phase, and our results showed that: (1) many photosynthesis and regulatory genes had lowered transcript levels; (2) individual genes, such as sigH, phrA, and isiA, which encode a group 4 sigma factor, a DNA photolyase, and a Chl-binding protein, respectively, were strongly induced; and, (3) the loss of SigB significantly impacted the differential expression of genes and modulated the changes seen in the wild type in regard to photosynthesis, regulatory and the unknown genes.
Keywords: Cyanobacteria; Light-limited growth; Sigma factors; Gene regulation; Microarrays; IsiA ; phrA
Analysis of the targeting sequences of an iron-containing superoxide dismutase (SOD) of the dinoflagellate Lingulodinium polyedrum suggests function in multiple cellular compartments by Andrzej Bodył; Paweł Mackiewicz (pp. 281-296).
One of the proteins targeted to the peridinin plastid of the dinoflagellate Lingulodinium polyedrum is the iron-containing superoxide dismutase (LpSOD). Like dinoflagellate plastid proteins of class II, LpSOD carries a bipartite presequence comprising a signal peptide followed by a transit peptide. Our bioinformatic studies suggest that its signal peptide is atypical, however, and that the entire presequence may function as a mitochondrial targeting signal. It is possible that LpSOD represents a new class of proteins in algae with complex plastids, which are co-targeted to the plastid and mitochondrion. In addition to the ambiguous N-terminal targeting signal, LpSOD contains a potential type-1 peroxisome-targeting signal (PTS1) located at its C-terminus. In accordance with a peroxisome localization of this dismutase, its mRNA has two in-frame AUG codons. Our bioinformatic analyses indicate that the first start codon resides in a much weaker oligonucleotide context than the second one. This suggests that synthesis of the plastid/mitochondrion-targeted and peroxisome-targeted isoforms could proceed through so-called leaky scanning. Moreover, our results show that expression of the two isoforms could be regulated by a ‘hairpin’ structure located between the first and second start codons.
Keywords: Alternative translation; Dinoflagellates; Peridinin plastid; Peroxisome targeting signal; Signal peptide; Superoxide dismutase
Association of the Rv0679c protein with lipids and carbohydrates in Mycobacterium tuberculosis/Mycobacterium bovis BCG by Takashi Matsuba; Yasuhiko Suzuki; Yoshinori Tanaka (pp. 297-311).
The Rv0679c gene in Mycobacterium tuberculosis H37Rv encodes a protein with a predicted molecular mass of 16,586 Da consisting of 165 amino acids which contains a putative N-terminal signal sequence and a consensus lipoprotein-processing motif. Globomycin treatment, Triton X-114 separation and mass spectrometry analyses clarified a property of the Rv0679c protein as a lipoprotein. In addition, trifluoromethanesulphonic acid treatment of the lysate revealed an association of the recombinant Rv0679c protein with carbohydrates. The Rv0679c protein homolog of Mycobacterium bovis BCG was also expressed as the protein associated with lipids and carbohydrates. In Western blot analysis, each of the protein homolog and Lipoarabinomannan (LAM) was detected as a similar pattern by anti-Rv0679c and anti-LAM antibodies, respectively. Interestingly, the Rv0679c protein was detected in commercially available LAM purified from M. tuberculosis. Inhibition assay of LAM synthesis in M. bovis BCG by ethambutol showed an altered migration pattern of the Rv0679c protein to low molecular mass similar to that of LAM. The results suggest that the Rv0679c protein exists as a tight complex with LAM in M. tuberculosis/M. bovis BCG.
Keywords: Lipoprotein; Carbohydrates; Glycosylation; LAM
Identification of three Zwittermicin A biosynthesis-related genes from Bacillus thuringiensis subsp. kurstaki strain YBT-1520 by Changming Zhao; Yi Luo; Chunxu Song; Zhongxin Liu; Shouwen Chen; Ziniu Yu; Ming Sun (pp. 313-319).
Zwittermicin A (ZwA) is a novel, broad-spectrum linear aminopolyol antibiotic produced by some Bacillus cereus and Bacillus thuringiensis. However, only part of its biosynthesis cluster has been identified and characterized from B. cereus UW85. To better understand the biosynthesis cluster of ZwA, a bacterial artificial chromosome (BAC) library of B. thuringiensis subsp. kurstaki strain YBT-1520, a ZwA-producing strain, was constructed. Two BAC clones, 1F8 and 5E2, were obtained by PCR, which overlap the known ZwA biosynthesis cluster of B. cereus UW85. This ZwA biosynthesis cluster is at least 38.6 kb and is located on the chromosome, instead of the plasmid. Partial DNA sequencing revealed both BAC clones carry three new ZwA biosynthesis-related genes, zwa6, zwa5A and zwa5B, which were found at the corresponding location of B. cereus UW85. Putative amino acid sequences of these genes shown that ZWA6 is homologous to a typical carbamoyltransferase from Streptomyces avermitilis, while ZWA5A and ZWA5B are homologs of cysteine synthetase and ornithine cyclodeaminase which jointly synthesize 2,3-diaminopropionate in the viomycin biosynthesis pathway, respectively. The identification of these three genes further supports the hypothesized ZwA biosynthesis pathway.
Keywords: Bacillus thuringiensis ; Zwittermicin A; BAC library; 2,3-Diaminopropionate
Rhizosphere Pseudomonas sp. strains reduce occurrence of pre- and post-emergence damping-off in chile and tomato in Central Himalayan region by Alok Sharma; Victor Wray; Bhavdish N. Johri (pp. 321-335).
Based on in vitro screening for PGP and anti-mycelial activity against three zoosporic pathogenic oomycetes, Pythium aphanidermatum 123, P. aphanidermatum 4746, and Phytophthora nicotianae 4747, seven bacterial isolates were selected for field trials on tomato and chile to test for plant growth promotion under natural and artificial disease-infested field sites in both winter and wet seasons. The effectiveness of isolates in the field trials correlated with the in vitro antagonism screening data. Pseudomonas sp. FQP PB-3, FQA PB-3 and GRP3 showed substantial beneficial effects on plant growth promotion and lowered considerably the incidence of pre- and post-emergence damping-off in both the crops under various disease scenarios. For example, seed bacterization with these bacterial strains reduced pre-emergence-damping off by ca. 60–70% in the two natural sites, with and without histories of fungicide use in the winter season, and to a lesser extent, ca. 20–40%, in the warmer wet (high humidity; 85–92%) season. The suppression efficacy for post-emergence damping-off was less compared to pre-emergence damping-off although still significant (P > 0.05). Our data unambiguously show that screening of a large number of bacterial pool identifies promising isolates that show beneficial effects on all stages of plant growth in natural oomycete-infested regimes.
The response regulator RpaB binds the high light regulatory 1 sequence upstream of the high-light-inducible hliB gene from the cyanobacterium Synechocystis PCC 6803 by Anthony D. Kappell; Lorraine G. van Waasbergen (pp. 337-342).
Cyanobacteria, like other photosynthetic organisms, respond to the potentially damaging effects of high-intensity light by regulating the expression of a variety of stress-responsive genes through regulatory mechanisms that remain poorly understood. The high light regulatory 1 (HLR1) sequence can be found upstream of many genes regulated by high-light (HL) stress in cyanobacteria. In this study, we identify the factor that binds the HLR1 upstream of the HL-inducible hliB gene in the cyanobacterium Synechocystis PCC 6803 as the RpaB (Slr0947) response regulator.
Keywords: Cyanobacteria; High-intensity light; RpaB response regulator; HLR1 cis element; hliB gene; Synechocystis PCC 6803
