Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

Archives of Microbiology (v.183, #2)


bac genes for recombinant bacilysin and anticapsin production in Bacillus host strains by Gerhard Steinborn; Mohammad-Reza Hajirezaei; Jürgen Hofemeister (pp. 71-79).
The genes encoding the biosynthesis of the dipeptide bacilysin and its antibiotic constituent anticapsin were isolated from several strains of Bacillus subtilis as well as B. amyloliquefaciens and B. pumilus. The ywfBCDEF genes of B. subtilis 168 were shown to carry the biosynthetic core functions and were renamed bacABCDE. Mutation of the bacD gene or transformation of the bacABC genes into a B. subtilis Δ (ywfA-bacABCDE) deletion mutant led to the accumulation of anticapsin, which was fourfold higher after transformation of the bacABC genes into a bacD mutant. The genes bacD and bacE proved to encode the functions of amino acid ligation and self-protection to bacilysin, respectively. Amplification of the bacABCDE gene cluster in a bacAB gene-deficient host strain of B. amyloliquefaciens resulted in a tenfold bacilysin overproduction. Some host strains required distinct glucosamine and yeast extract supplements in order to prevent suicidal effects of the recombinant antibiotic production. The bac genes from different Bacillus species revealed the same arrangement and 72.6–88.6% of sequence identity.

Keywords: Antibiotics; Anticapsin; Bacilysin; Gene cluster; GeneticsBacillus


Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44 by Monika Thiel; Stefan R. Kaschabek; Janosch Gröning; Margit Mau; Michael Schlömann (pp. 80-94).
The genes responsible for the degradation of 2,4-dichlorophenoxyacetate (2,4-D) by α-Proteobacteria have previously been difficult to detect by using gene probes or polymerase chain reaction (PCR) primers. PCR products of the chlorocatechol 1,2-dioxygenase gene, tfdC, now allowed cloning of two chlorocatechol gene clusters from the Sphingomonas sp. strain TFD44. Sequence characterization showed that the first cluster, tfdD,RFCE, comprises all the genes necessary for the conversion of 3,5-dichlorocatechol to 3-oxoadipate, including a presumed regulatory gene, tfdR, of the LysR-type family. The second gene cluster, tfdC2E2F2, is incomplete and appears to lack a chloromuconate cycloisomerase gene and a regulatory gene. Purification and N-terminal sequencing of selected enzymes suggests that at least representatives of both gene clusters (TfdD of cluster 1 and TfdC2 of cluster 2) are induced during the growth of strain TFD44 with 2,4-D. A mutant constructed to contain an insertion in the chloromuconate cycloisomerase gene tfdD still was able to grow with 2,4-D, but more slowly and with a longer lag phase. This, and the detection of additional activity peaks during protein purification suggest that strain TFD44 harbors at least another chloromuconate cycloisomerase gene. The sequence of the tfdCE region was almost identical to that of a partially characterized chlorocatechol catabolic gene cluster of Sphingomonas herbicidovorans MH, whereas the sequence of the tfdC2E2F2 cluster was different. The similarity of the predicted proteins of the tfdD,RFCE and tfdC2E2F2 clusters to known sequences of other Proteobacteria in the database ranged from 42 to 61% identical positions for the first cluster and from 45.5 to 58% identical positions for the second cluster. Between both clusters, the similarities of their predicted proteins ranged from 44.5 to 64% identical positions. Thus, both clusters (together with those of S. herbicidovorans MH) represent deep-branching lines in the respective dendrograms, and the sequence information will help future primer design for the detection of corresponding genes in the environment.

Keywords: 2,4-Dichlorophenoxyacetate degradationSphingomonasChlorocatechol catabolic genes; Chloromuconate cycloisomerase


Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614 by Timothy E. Mattes; Nicholas V. Coleman; Jim C. Spain; James M. Gossett (pp. 95-106).
Nocardioides sp. strain JS614 utilizes vinyl chloride and ethene as carbon and energy sources. JS614 could be influential in natural attenuation and biogeochemical ethene cycling, and useful for bioremediation, biocatalysis and metabolic engineering, but a fundamental understanding of the physiological and genetic basis of vinyl chloride and ethene assimilation in strain JS614 is required. Alkene monooxygenase (AkMO) activity was demonstrated in whole-cell assays and epoxyalkane:coenzyme M transferase (EaCoMT) activity was detected in JS614 cell-free extracts. Pulsed-field gel electrophoresis revealed a 290-kb plasmid (pNoc614) in JS614. Curing experiments and PCR indicated that pNoc614 encodes vinyl chloride/ethene-degradation genes. JS614 vinyl chloride/ethene catabolic genes and flanking DNA (34.8 kb) were retrieved from a fosmid clone. AkMO and EaCoMT genes were found in a putative operon that included CoA transferase, acyl-CoA synthetase, dehydrogenase, and reductase genes. Adjacent to this gene cluster was a divergently transcribed gene cluster that encoded possible coenzyme M biosynthesis enzymes. Reverse transcription-PCR demonstrated the vinyl chloride- and ethene-inducible nature of several genes. Genes encoding possible plasmid conjugation, integration, and partitioning functions were also discovered on the fosmid clone.

Keywords: Linear plasmid; Alkene oxidation; Bioremediation; Vinyl chloride


Flow cytometry analysis of germinating Bacillus spores, using membrane potential dye by Christian Laflamme; Jim Ho; Marc Veillette; Marie-Chantal de Latrémoille; Daniel Verreault; Anne Mériaux; Caroline Duchaine (pp. 107-112).
Germination of Bacillus anthracis spores is necessary for the transcription of plasmidic genes essential to the infection. Assessing germination potential is crucial to predict the risk associated with pathogenic Bacillus exposure. The aim of this study was to set up a viability assay based on membrane potential in order to predict the earliest germination event of spores. B. cereus and two strains of B. subtilis were used. The spores were isolated with a sodium bromide gradient. Approximately 107 spores were incubated at 37°C in tryptic soy broth (TSB). Aliquots were harvested at predetermined times and stained with 3,3′-dihexyloxacarbocyanine iodide [DiOC6(3)] or with bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)]. Fluorescence characteristics were obtained using flow cytometry. The earliest detectable activation of membrane potential occurred after 15 min of incubation in TSB using DiOC6(3). Using DiBAC4(3), the earliest detectable signal was after 4 h of incubation. Control experiments using carbonyl cyanide m-chlorophenylhydrazone (CCCP)-treated spores did not show any change in the fluorescence intensity over time. Since no membrane potential and no germination were detected in CCCP-treated spores, the activation of membrane potential seems to be associated with germination. DiOC6(3) can be used as an early membrane potential indicator for spores. DiBAC4(3), by contrast, is not a early membrane potential marker.

Keywords: Membrane potential; GerminationBacillus anthracisSpore


Phosphonate catabolism by Campylobacter spp. by George L. Mendz; Francis Mégraud; Victoria Korolik (pp. 113-120).
The catabolism of phosphonates (Phn) by Campylobacter spp. was investigated employing nuclear magnetic resonance spectroscopy and cell culture techniques. The bacteria were capable of cleaving the Phn bonds of different compounds, including α-aminomethylphosphonate, phosphonoacetate and phenylphosphonate (PhePhn). The kinetic parameters of these activities were determined in vivo in intact cells and in situ in whole-cell lysates. Cleavage of Phn-bearing compounds was associated with the cell-wall and cytosolic fractions. Results from substrate competition experiments suggested that at least two enzyme activities appeared to be involved in the cleavage of carbon–phosphate (C–P) bonds. In silico analyses indicated that no genes orthologous to those encoding C–P bond-cleaving enzymes in other bacteria were present in the Campylobacter jejuni genome. In most bacteria studied, Phn catabolism is induced under conditions of phosphate limitation; however, in Campylobacter spp. these activities were expressed in cells grown in media rich in phosphate. In chemically defined media, PhePhn supported bacterial growth and proliferation at concentrations above 100 μM in the absence of phosphate. Thus, Phn utilisation may be a survival mechanism of Campylobacter spp. in milieux lacking sufficient phosphate. The expression of these enzyme activities in media abundant in phosphate suggested also that they may have other physiological roles.

Keywords: PhosphonateCampylobacterPhosphonate catabolism; C–P bonds; Survival mechanisms


Oxaloacetate decarboxylase of Vibrio cholerae: purification, characterization, and expression of the genes in Escherichia coli by Pius Dahinden; Yolanda Auchli; Thierry Granjon; Malgorzata Taralczak; Markus Wild; Peter Dimroth (pp. 121-129).
The oxaloacetate decarboxylase (OAD) Na+ pump consists of subunits α, β, and γ, which are expressed from an oadGAB gene cluster present in various anaerobic bacteria. Vibrio cholerae has two copies of oad genes, which are termed oad-1 and oad-2. The oad-2 genes are part of the citrate fermentation operon, while the oad-1 genes are flanked by genes encoding products not involved in a catabolic pathway. The gene sequences of oad-1 and oad-2 of V. cholerae strain O395-N1 were determined. The apparent frameshift in the published sequence of the oadA-2 gene from V. cholerae El Tor N16961 was not present in strain O395-N1. Upon anaerobic growth of V. cholerae on citrate, exclusively the oad-2 genes are expressed. OAD was isolated from these cells by monomeric avidin–Sepharose affinity chromatography. The enzyme was of higher specific activity than that from Klebsiella pneumoniae and was significantly more stable. Decarboxylase activity was Na+ dependent, and the activation profile showed strong cooperativity with a Hill coefficient nH=1.8. Oxalate and oxomalonate inhibited the enzyme with half-maximal concentrations of 10 μM and 200 μM, respectively. After reconstitution into proteoliposomes, the enzyme acted as a Na+ pump. With size-exclusion chromatography, the enzyme eluted in a symmetrical peak at a retention volume corresponding to an apparent molecular mass of approximately 570 kDa, suggesting a tetrameric structure for OAD-2. The two oad gene clusters were heterologously expressed in Escherichia coli, and the decarboxylases were isolated from the host cells.

Keywords: Vibrio choleraeOxaloacetate decarboxylase; Na+ pump


Protocatechuate 4,5-dioxygenase from Comamonas testosteroni T-2: biochemical and molecular properties of a new subgroup within class III of extradiol dioxygenases by Jörg Mampel; Miguel A. Providenti; Alasdair M. Cook (pp. 130-139).
Comamonas testosteroni T-2 degraded at least eight aromatic compounds via protocatechuate (PCA), whose extradiol ring cleavage to 2-hydroxy-4-carboxymuconate semialdehyde (HCMS) was catalysed by PCA 4,5-dioxygenase (PmdAB). This inducible, heteromultimeric enzyme was purified. It contained two subunits, α (PmdA) and β (PmdB), and the molecular masses of the denatured proteins were 18 kDa and 31 kDa, respectively. PCA was converted stoichiometrically to HCMS with an apparent Km of 55 μM and at a maximum velocity of 1.5 μkat. Structure–activity-relationship analysis by testing 16 related compounds as substrate for purified PmdAB revealed an absolute requirement for the vicinal diol and for the carboxylate group of PCA. Besides PCA, only 5′-hydroxy-PCA (gallate) induced oxygen uptake. The N-terminal amino acid sequence of each subunit was identical to the corresponding sequences in C. testosteroni BR6020, which facilitated sequencing of the pmdAB genes in strain T-2. Small differences in the amino acid sequence had significant effects on enzyme stability. Several homologues of pmdAB were found in sequence databases. Residues involved in substrate binding are highly conserved among the homologues. Their sequences grouped within the class III extradiol dioxygenases. Based on our biochemical and genetic analyses, we propose a new branch of the heteromultimeric enzymes within that class.

Keywords: Extradiol; Oxygenase; Degradation; Toluenesulfonate; Structure–activity relationship


Diverse dextranase genes from Paenibacillus species by Patrick M. Finnegan; Stevens M. Brumbley; Michael G. O’Shea; Helena Nevalainen; Peter L. Bergquist (pp. 140-147).
Genes encoding dextranolytic enzymes were isolated from Paenibacillus strains Dex40-8 and Dex50-2. Single, similar but non-identical dex1 genes were isolated from each strain, and a more divergent dex2 gene was isolated from strain Dex50-2. The protein deduced from the Dex40-8 dex1 gene sequence had 716 amino acids, with a predicted Mr of 80.8 kDa. The proteins deduced from the Dex50-2 dex1 and dex2 gene sequences had 905 and 596 amino acids, with predicted Mr of 100.1 kDa and 68.3 kDa, respectively. The deduced amino acid sequences of all three dextranolytic proteins had similarity to family 66 glycosyl hydrolases and were predicted to possess cleavable N-terminal signal peptides. Homology searches suggest that the Dex40-8 and Dex50-2 Dex1 proteins have one and two copies, respectively, of a carbohydrate-binding module similar to CBM_4_9 (pfam02018.11). The Dex50-2 Dex2 deduced amino acid sequence had highest sequence similarity to thermotolerant dextranases from thermophilic Paenibacillus strains, while the Dex40-8 and Dex50-2 Dex1 deduced protein sequences formed a distinct sequence clade among the family 66 proteins. Examination of seven Paenibacillus strains, using a polymerase chain reaction-based assay, indicated that multiple family 66 genes are common within this genus. The three recombinant proteins expressed in Escherichia coli possessed dextranolytic activity and were able to convert ethanol-insoluble blue dextran into an ethanol-soluble product, indicating they are endodextranases (EC 3.2.1.11). The reaction catalysed by each enzyme had a distinct temperature and pH dependence.

Keywords: Dextranase; Dextranolytic enzymes; Blue dextranPaenibacillus


A pseudo-SECIS element in Methanococcus voltae documents evolution of a selenoprotein into a sulphur-containing homologue by August Böck; Michael Rother (pp. 148-150).
Methanococcus maripaludis possesses two sets of F420-non-reducing hydrogenases which are differentially expressed in response to the selenium content of the medium. One of the subunits of the selenium-containing hydrogenase, VhuD, contains two selenocysteine residues, whereas the homologue of M. voltae possesses cysteine residues in the equivalent positions. Analysis of the 3′ non-translated region of the M. voltae vhuD mRNA revealed the existence of a structure resembling the consensus of archaeal SECIS elements but with deviations rendering it non-functional in determining selenocysteine insertion. The presence of a pseudo-SECIS element in the 3′ non-translated region of the vhuD mRNA from M. voltae suggests that VhuD from this organism has developed from a selenocysteine-containing ancestor. The 3′ non-translated region from the VhcD homologues neither contained a SECIS nor a pseudo SECIS element.

Keywords: Selenium metabolism; Selenoprotein synthesis; SECIS motif; Archaea; Hydrogenase

Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: