|
|
Archives of Microbiology (v.172, #2)
Mechanisms of dominance: coexistence of picocyanobacterial genotypes in a freshwater ecosystem
by C. Postius; Anneliese Ernst (pp. 69-75).
The autotrophic picoplankton of the pelagic zone of the mesotrophic Lake Constance is dominated by phycoerythrin-rich unicellular cyanobacteria phylogenetically related to the marine Synechococcus and Prochlorococcus cluster. In Lake Constance, the abundance of picocyanobacteria shows a recurrent pattern of seasonal variations. Evidence of diverse subpopulations was obtained by electron-microscopic examination of natural water samples and isolated strains that unveiled different surface structures of picocyanobacteria. Further evidence was obtained by DNA analysis of 26 clonal isolates representing 12 different genotypes. Variations in light and nutrient supply revealed distinct abilities of the genetically different strains to cope with these stress situations. Furthermore, cultured heterotrophic nanoflagellates exhibited differential feeding preferences for certain Synechococcus strains. The findings imply that growth and loss rates of the natural cyanobacterial community may be influenced by its genetic composition. Phylogenetic analyses of isolated strains indicated that the physiological diversification of pelagic Synechococcus spp. has occurred during a recent adaptive radiation. An example for genetic mechanisms underlying physiological diversification is indicated by mobile DNA elements found in a Synechocystis strain also isolated from the pelagic zone of Lake Constance. The observations suggest that dominance of Synechococcus spp. was achieved by evolutionary adaptation and coexistence of numerous genotypes generating a physiologically highly diversified population.
Keywords: Key words Cyanobacteria; Synechococcus spp.; Autotrophic picoplankton; Stress factors; Physiological diversity; Grazing; Phylogenetic analysis
Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens
by Peter Zimmermann; Simone Laska; A. Kletzin (pp. 76-82).
Sulfite-oxidizing enzyme activities were analyzed in cell-free extracts of aerobically grown cells of Acidianus ambivalens, an extremely thermophilic and chemolithoautotrophic archaeon. In the membrane and cytoplasmic fractions, two distinct enzyme activities were found. In the membrane fraction, a sulfite:acceptor oxidoreductase activity was found [530 mU (mg protein)–1; apparent K m for sulfite, 3.6 mM]. In the cytoplasmic fraction the following enzyme activities were found and are indicative of an oxidative adenylylsulfate pathway: adenylylsulfate reductase [138 mU (mg protein)–1], adenylylsulfate:phosphate adenyltransferase [“ADP sulfurylase”; 86 mU (mg protein)–1], adenylate kinase [650 mU (mg protein)–1], and rhodanese [thiosulfate sulfur transferase, 9.2 mU (mg protein)–1]. In addition, 5′,5′′′-P1,P4-di(adenosine-5′) tetraphosphate (Ap4A) synthase and Ap4A pyrophosphohydrolase activities were detected.
Keywords: Key words Archaea; Sulfite: acceptor oxidoreductase; Adenylylsulfate: phosphate adenyltransferase; ADP; sulfurylase; Adenylylsulfate reductase; 5′; 51; P4-di(adenosine-5′) tetraphosphate synthase; 5′; 5-P1; P4-di(adenosine-5′) tetraphosphate; pyrophosphohydrolase; Adenylate kinase
Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments
by J. Overmann; M. J. L. Coolen; Christian Tuschak (pp. 83-94).
Specific amplification of 16S rRNA gene fragments in combination with denaturing gradient gel electrophoresis (DGGE) was used to generate fingerprints of Chromatiaceae, green sulfur bacteria, Desulfovibrionaceae, and β-Proteobacteria. Sequencing of the gene fragments confirmed that each primer pair was highly specific for the respective phylogenetic group. Applying the new primer sets, the bacterial diversity in the chemoclines of a eutrophic freshwater lake, a saline meromictic lake, and a laminated marine sediment was investigated. Compared to a conventional bacterial primer pair, a higher number of discrete DGGE bands was generated using our specific primer pairs. With one exception, all 15 bands tested yielded reliable 16S rRNA gene sequences. The highest diversity was found within the chemocline microbial community of the eutrophic freshwater lake. Sequence comparison revealed that the six sequences of Chromatiaceae and green sulfur bacteria detected in this habitat all represent distinct and previously unknown phylotypes. The lowest diversity of phylotypes was detected in the chemocline of the meromictic saline lake, which yielded only one sequence each of the Chromatiaceae, β-2-Proteobacteria, and Desulfovibrionaceae, and no sequences of green sulfur bacteria. The newly developed primer sets are useful for the detection of previously unknown phylotypes, for the comparison of the microbial diversity between different natural habitats, and especially for the rapid monitoring of enrichments of unknown bacterial species.
Keywords: Key words Denaturing gradient gel electrophoresis; Group-specific PCR; Chemocline; Green sulfur; bacteria; Purple sulfur bacteria; β-Proteobacteria; Microbial diversity
Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring
by Juan M. González; D. Sheckells; Mareike Viebahn; Donara Krupatkina; Kimberly M. Borges; F. T. Robb (pp. 95-101).
An extremely thermophilic, sulfur-dependent archaeon, strain WT1, was isolated from a freshwater hot spring in the Lake Taupo area of North Island, New Zealand. The cells are flagellated, strictly anaerobic cocci that grow optimally at 85 °C and 5.4 g NaCl l–1. The strain grows heterotrophically on complex proteinaceous substrates or on appropriate salts plus amino acid mixtures and is also able to utilize maltose, starch, and pyruvate. Elemental sulfur could be replaced by cystine or thioglycollate. The range of temperatures allowing growth is from 60 to 90 °C; the pH supporting growth ranges from 5 to 8 (optimum, pH 7). Strain WT1 grew in a defined medium containing amino acids as the sole carbon and energy sources. The required amino acids were: Arg, His, Ile, Leu, Phe, Ser, Thr, Trp, Tyr, and Val. Strain WT1 showed sensitivity to rifampicin. DNA G+C content was 50.4 mol%. Phylogenetic analysis of the sequence encoding the 16S rRNA gene indicated that this isolate is a member of the Thermococcales. DNA/DNA hybridization studies revealed no similarity to several species of Thermococcus and Pyrococcus, with the exception of Thermococcus zilligii. Based on the reported results, we propose strain WT1 as a new species to be named Thermococcus waiotapuensis sp. nov.
Keywords: Key words Thermococcales; Thermococcus; waiotapuensis; Extreme thermophile; Archaea; Minimal medium; Sulfur requirement
Antibody responses against flagellin in mice orally immunized with attenuated Salmonella vaccine strains
by Maria Elisabete Sbrogio De Almeida; Salete M. Newton; Luís Carlos S. Ferreira (pp. 102-108).
Salmonella fIagellin has been repeatedly used as a carrier for heterologous peptide epitopes either as a parenterally delivered purified antigen or as a parenterally/orally-administered, flagellated, live, attenuated vaccine. Nonetheless, the ability to induce specific antibody responses against the flagellin moiety, fused or not with heterologous peptide, has not usually been reported in mice orally inoculated with a live, attenuated, flagellated Salmonella strain. In this work we evaluated the immunogenicity of flagellin in mice following oral inoculation with an aroA Salmonella enterica serovar Dublin SL5929 strain, which expressed plasmid-encoded recombinant hybrid flagellin fused to the CTP3 epitope (amino acids 50–64) of cholera toxin B-subunit. In contrast to parenterally immunized mice, no significant CTP3- or flagellin-specific antibody responses either in sera (IgG) or feces (IgA) were detected following repeated oral delivery of the recombinant Salmonella strain to C57BL/6 mice. Similarly, flagellin-specific antibody responses were also not detected in mice immunized with strain SL5930, which expressed a nonhybrid flagellin. The lack of flagellin-specific antibody responses was not associated with deficient Peyer patch colonization or spleen invasion. Moreover, stabilization of the flagellin-coding gene by integration into the host chromosome did not significantly improve flagellin-specific antibody responses following administration by the oral route. Taken together, these results suggest that flagellin does not represent an efficient peptide carrier for activation of antibody responses in mice orally immunized with live, attenuated Salmonella strains.
Keywords: Key wordsSalmonella vaccines; Flagellin fusions; Mucosal vaccines; CTP3 epitope; Cholera toxin
Characterization of the molybdate transport system ModABC of Staphylococcus carnosus
by Heike Neubauer; Iris Pantel; Per-Eric Lindgren; F. Götz (pp. 109-115).
Transposon mutagenesis of Staphylococcus carnosus led to the identification of three genes, modABC, which encode an ABC transporter that is involved in molybdate transport. It was shown by [14C]palmitate labeling that ModA represents a lipoprotein that in gram-positive bacteria is the counterpart of the periplasmic binding proteins of gram-negative organisms. The sequence characteristics identify ModB as the integral-membrane, channel-forming protein and ModC as the ATP-binding energizer for the transport system. Mutants defective in modABC had only 0.4% of the wild-type nitrate reductase activity. Molybdate at a non-physiologically high concentration (100 μM) fully restored nitrate reductase activity, suggesting that at least one other system is able to transport molybdate, but with lower affinity. The expression of modA (and most likely of modBC) was independent of oxygen and nitrate. To date, there are no indications for molybdate-specific regulation of modABC expression since in a modB mutant, modA expression was unchanged in comparison to the wild-type.
Keywords: Key wordsStaphylococcus carnosus; Nitrate; reductase; Tn917 insertion mutants; Molybdate; transport; Molybdenum cofactor biosynthesis; Lipoprotein
Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain
by Silke Heising; Lothar Richter; Wolfgang Ludwig; B. Schink (pp. 116-124).
A green phototrophic bacterium was enriched with ferrous iron as sole electron donor and was isolated in defined coculture with a spirilloid chemoheterotrophic bacterium. The coculture oxidized ferrous iron to ferric iron with stoichiometric formation of cell mass from carbon dioxide. Sulfide, thiosulfate, or elemental sulfur was not used as electron donor in the light. Hydrogen or acetate in the presence of ferrous iron increased the cell yield of the phototrophic partner, and hydrogen could also be used as sole electron source. Complexed ferric iron was slowly reduced to ferrous iron in the dark, with hydrogen as electron source. Similar to Chlorobium limicola, the phototrophic bacterium contained bacteriochlorophyll c and chlorobactene as photosynthetic pigments, and also resembled representatives of this species morphologically. On the basis of 16S rRNA sequence comparisons, this organism clusters with Chlorobium, Prosthecochloris, and Pelodictyon species within the green sulfur bacteria phylum. Since the phototrophic partner in the coculture KoFox is only moderately related to the other members of the cluster, it is proposed as a new species, Chlorobium ferrooxidans. The chemoheterotrophic partner bacterium, strain KoFum, was isolated in pure culture with fumarate as sole substrate. The strain was identified as a member of the ɛ-subclass of the Proteobacteria closely related to “Geospirillum arsenophilum” on the basis of physiological properties and 16S rRNA sequence comparison. The “Geospirillum” strain was present in the coculture only in low numbers. It fermented fumarate, aspartate, malate, or pyruvate to acetate, succinate, and carbon dioxide, and could reduce nitrate to dinitrogen gas. It was not involved in ferrous iron oxidation but possibly provided a thus far unidentified growth factor to the phototrophic partner.
Keywords: Key words Iron metabolism; Green phototrophic; bacteria; Chlorobium ferrooxidans; Geospirillum; Phototrophic iron oxidation; 16S rRNA sequence; analysis
Fractionation of sulfur isotopes during dissimilatory reduction of sulfate by a thermophilic gram-negative bacterium at 60 °C
by M. E. Böttcher; S. M. Sievert; Jan Kuever (pp. 125-128).
Sulfur isotope (34S/32S) fractionation during reduction of dissolved sulfate was investigated with a growing batch culture of a thermophilic, gram-negative, sulfate-reducing bacterium (strain MT-96) at 60 °C. The completely oxidizing strain was isolated from geothermally heated sediments of a shallow-water hydrothermal vent in the Mediterranean Sea. The hydrogen sulfide produced in the experiments was enriched in 32S by approximately 19‰ as compared to sulfate, which indicates that stable isotope discrimination by this thermophile is within the range found previously for mesophilic sulfate-reducing bacteria, and only slightly higher than that observed for the thermophilic gram-positive Desulfotomaculum nigrificans.
Keywords: Key words Thermophilic sulfate-reducing bacteria; Sulfate reduction; Gram-negative bacteria; Stable sulfur isotope fractionation; High temperature; Complete; oxidizer
|
|