Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

Archives of Microbiology (v.171, #4)


Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways by Donovan P. Kelly (pp. 219-229).
The free-energy data on which assessments of the autotrophic growth efficiencies of chemolithotrophic bacteria are commonly based have been reevaluated and new values have been calculated. It has been concluded that many earlier calculations are in error and that many values previously reported in the literature are overestimates of efficiency. A problem posed by the chemolithotrophic sulfur-oxidizing bacteria is the elucidation of the mechanism by which elemental sulfur and the sulfane-sulfur (-S-) of the thionic acids are converted to sulfite. Even after decades of studies on sulfur oxidation by these bacteria, this problem has not been fully resolved although it is widely thought that conversion of sulfur to sulfite is brought about by an oxygenase. The biochemically feasible mechanisms by which sulfur and “sulfane” oxidation to sulfite might occur are reviewed. The possible insight afforded by chemical thermodynamics into the most likely mechanisms for oxidation to sulfate in relation to the efficiency of energy conservation is discussed. Energetic calculations and growth yield data indicate that the energy-yielding oxidation of sulfur and “sulfane” to sulfite, either coupled to energy-conserving electron transport or catalyzed by an oxygenase, could explain divergent growth yields among different sulfur-chemolithotrophs.

Keywords: Key words Chemolithotrophic sulfur oxidation; Sulfur oxygenase; Energy conservation; Thermodynamics; Growth yields; Thiobacillus; Archaea


Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium by M. M. Häggblom; L. Y. Young (pp. 230-236).
A denitrifying bacterium was isolated from a river sediment after enrichment on 3-chlorobenzoate under anoxic, denitrifying conditions. The bacterium, designated strain 3CB-1, degraded 3-chlorobenzoate, 3-bromobenzoate, and 3-iodobenzoate with stoichiometric release of halide under conditions supporting anaerobic growth by denitrification. The 3-halobenzoates and 3-hydroxybenzoate were used as growth substrates with nitrate as the terminal electron acceptor. The doubling time when growing on 3-halobenzoates ranged from 18 to 25 h. On agar plates with 1 mM 3-chlorobenzoate as the sole carbon source and 30 mM nitrate as the electron acceptor, strain 3CB-1 formed small colonies (1–2 mm in diameter) in 2 to 3 weeks. Anaerobic degradation of both 3-chlorobenzoate and 3-hydroxybenzoate was dependent on nitrate as an electron acceptor and resulted in nitrate reduction corresponding to the stoichiometric values for complete oxidation of the substrate to CO2. 3-Chlorobenzoate was not degraded in the presence of oxygen. 3-Bromobenzoate and 3-iodobenzoate were also degraded under denitrifying conditions with stoichiometric release of halide, but 3-fluorobenzoate was not utilized by the bacterium. Utilization of 3-chlorobenzoate was inducible, while synthesis of enzymes for 3-hydroxybenzoate degradation was constitutively low, but inducible. Degradation was specific to the position of the halogen substituent, and strain 3CB-1 did not utilize 2- or 4-chlorobenzoate.

Keywords: Key words Anaerobic degradation; Denitrification; Halobenzoate; Dehalogenation


Purification and properties of the membrane-bound NADH oxidase of a facultatively anaerobic alkaliphile by Tomoko Hamada; Takayoshi Wakagi; Hirotaka Shiba; N. Koyama (pp. 237-242).
A membrane-bound NADH oxidase of an anaerobic alkaliphile, M-12 (a strain of Amphibacillus sp.), was solubilized with decanoyl N-methylglucamide and purified by chromatography on DEAE-Sepharose and hydroxyapatite. The purified enzyme appears to consist of a single polypeptide component with an apparent molecular mass of 56 kDa. The enzyme catalyzed the oxidation of NADH with the formation of H2O2 and exhibited a specific activity of 46 μmol NADH min–1 (mg protein)–1. NADPH did not serve as a substrate for the enzyme. The K m for NADH was estimated to be 0.05 mM. The enzyme exhibited a pH dependence for activity, with a pH optimum at approximately 9.5. The enzyme required a high concentration of salt and exhibited maximum activity in the presence of 600 mM NaCl.

Keywords: Key words NADH oxidase; Membrane; Alkaliphile; Halophile


Control by light of whole-cell nitrogenase activity and of nitrogenase and bacteriochlorophyll a formation in Rhodobacter capsulatus strain B10S by Klaus Maner; Jürgen Oelze (pp. 243-248).
Control of nitrogenase and bacteriochlorophyll a (BChl) by light was studied under steady-state conditions with continuous cultures of Rhodobacter capsulatus B10S supplied with malate and growth-limiting amounts of ammonium. Consumption of malate and, correspondingly, the C/N ratio at which malate and ammonium were consumed increased when illumination was increased from 3 to approximately 20 klx and became constant at higher illuminations of up to 40 klx. Essentially the same kinetics were observed with respect to nitrogenase activity of cells, contents of nitrogenase polypeptides, and nifH promoter activity. Substrate consumption was half-maximal at 8 klx and was independent of the presence of nitrogenase. Therefore, it is concluded that light controls the C/N ratio (a quantitative measure of the nitrogen status of cells), which in turn is involved in the control of nitrogenase at the level of nif promoter activity. Post-translational regulation of nitrogenase activity by ADP-ribosylation was not observed under steady-state conditions, but it took place when illumination was suddenly decreased to the range where malate consumption and, consequently, the C/N ratio decreased. Irrespective of the presence or absence of nitrogenase, specific BChl contents of the cultures were constant above 20 klx, and they increased at lower illuminations. These results do not confirm a recently proposed link between nitrogen fixation and photosynthesis as represented by BChl.

Keywords: Key wordsRhodobacter capsulatus; Nitrogenase; derepression; Nitrogen status; Bacteriochlorophyll a; ADP-ribosylation; Continuous culture


Molecular cloning and characterization of Ct-PKAR, a gene encoding the regulatory subunit of cAMP-dependent protein kinase in Colletotrichum trifolii by Zhonghui Yang; M. B. Dickman (pp. 249-256).
Colletotrichum trifolii is a plant pathogenic fungus causing alfalfa anthracnose. Prepenetration development, including conidial germination and appressorial formation, are requisite for successful infection. Pharmacological data from our laboratory indicated a role for a cAMP-dependent protein kinase (PKA) pathway during these early morphogenic transitions. Thus, the cloning and characterization of the genes for PKA catalytic and regulatory subunits were undertaken to more precisely determine the function of PKA during C. trifolii pathogenic growth and development. In this report, the cloning, sequencing, and partial characterization of the gene encoding the regulatory subunit of cAMP-dependent protein kinase (Ct-PKAR) is described. An open reading frame of 1,212 bp containing 404 predicted amino acid residues was identified. Database analysis revealed that the deduced amino acid sequence of Ct-PKAR shares considerable similarity with that of PKA regulatory subunits in other organisms, particularly in the conserved regions. Furthermore, the Ct-PKAR protein is classified as a type II regulatory subunit based on the presence of the hallmark autophosphorylation site. Southern blot analysis indicated that Ct-PKAR is a single-copy gene. Northern blot analysis showed that the expression of Ct-PKAR is developmentally regulated. Ct-PKAR was shown to be a functional regulatory subunit of PKA by complementating the Neurospora crassa mcb mutant, which has a temperature-sensitive mutation in the regulatory subunit of PKA.

Keywords: Key words cAMP-dependent protein kinase; Type II; regulatory subunit; Complementation; Neurospora; crassa mcb mutant; Conidial germination; Appressoria


Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067 by E. I. Larsen; Lindsay I. Sly; Alastair G. McEwan (pp. 257-264).
Heat treatment of Pedomicrobium sp. ACM 3067 enhanced the adsorption of Mn(II) to whole cells but abolished Mn(II)-oxidising activity. In whole cells, optimal Mn(II)-oxidising activity occurred at pH 7 and 25 °C. The apparent K m of the Mn(II)-oxidising system for Mn(II) was 26 μM. These data confirm that Mn(II) oxidation is an enzymic process in Pedomicrobium sp. ACM 3067. Measurement of Mn(II) oxidation during the growth cycle demonstrated that the highest activity occurred during early- to mid-exponential phase and was independent of the presence of Mn in the growth medium. Mn(II)-oxidising activity was localised to the membrane fraction. Transmission electron microscopy showed that this fraction consisted of double-layered membrane vesicles. Positively charged molecules such as poly-l-lysine interfered with the adsorption and oxidation of Mn(II) by whole cells and membranes. Similarly, aminoglycoside antibiotics such as gentamicin sulfate proved to be potent inhibitors of Mn(II) oxidation. Treatment of cells with the copper chelator diethyldithiocarbamate inhibited Mn(II) oxidation. Enzyme activity was restored by the addition of Cu(II) ions, but not by Co(II) nor Zn(II). We conclude that Mn(II) oxidation in Pedomicrobium sp. ACM 3067 is catalysed by a Cu-dependent enzyme.

Keywords: Key wordsPedomicrobium; Manganese adsorption; Manganese oxidation


Specific detection of green sulfur bacteria by in situ hybridization with a fluorescently labeled oligonucleotide probe by Christian Tuschak; Jens Glaeser; J. Overmann (pp. 265-272).
An oligodeoxynucleotide probe (GSB-532) specific for green sulfur bacteria was developed. Highly stringent hybridization conditions were established using whole cells of Chlorobium limicola DSM249 immobilized on glass slides. At a formamide concentration of 10%, the optimum specificity was reached at 47 °C. When a conventional fixation procedure was used, a conspicuous autofluorescence developed within the cells. This autofluorescence was due to the liberation of bacteriochlorophyll by the detergent Triton X-100 and a subsequent conversion to bacteriopheophytin and related compounds. The signal-to-noise ratio could be increased by a final dehydration of the samples with methanol. Finally, the method was adapted to the hybridization of natural samples collected on polycarbonate membrane filters. In situ hybridization of pure cultures, various enrichments, and natural samples from the chemocline of a freshwater lake confirmed that probe GSB-532 hybridized exclusively to cells of green sulfur bacteria. Our protocol allows the highly specific detection of green sulfur bacteria in water samples and a rapid screening of natural bacterial communities. Employing probe GSB-532, the phylogenetic affiliation of the epibionts in “Chlorochromatium aggregatum” and “Pelochromatium roseum” could be demonstrated for the first time.

Keywords: Key words Green sulfur bacteria; Chlorobiaceae; In situ hybridization; Oligonucleotide probe; “Chlorochromatium”; “Pelochromatium”


Comparative effects of Saccharomyces cerevisiae cultivation under copper stress on the activity and kinetic parameters of plasma-membrane-bound H+-ATPases PMA1 and PMA2 by Alexandra R. Fernandes; I. Sá-Correia (pp. 273-278).
The major yeast plasma membrane H+-ATPase is encoded by the essential PMA 1 gene. The PMA 2 gene encodes an H+-ATPase that is functionally interchangeable with the one encoded by PMA 1 , but it is expressed at a much lower level than the PMA 1 gene and it is not essential. Using genetically manipulated strains of Saccharomyces cerevisiae that exclusively synthesize PMA1 ATPase or PMA2 ATPase under control of the PMA1 promoter, we found that yeast cultivation under mild copper stress leads to a similar activation of PMA2 and PMA1 isoforms. At high inhibitory copper concentrations (close to the maximum that allowed growth), ATPase activity was reduced from maximal levels; this decrease in activity was less important for PMA2 ATPase than for PMA1 ATPase. The higher tolerance to high copper stress of the artificial strain synthesizing PMA2 ATPase exclusively, as compared to that synthesizing solely PMA1 ATPase, correlated both with the lower sensitivity of PMA2 ATPase to the deleterious effects of copper in vivo and with its higher apparent affinity for MgATP, and suggests that plasma membrane H+-ATPase activity plays a role in yeast tolerance to copper.

Keywords: Key words Plasma membrane H+-ATPase; PMA1; ATPase; PMA2 ATPase; Saccharomyces cerevisiae; Copper stress; Copper tolerance


GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum by H.-M. Fischer; Karin Schneider; Markus Babst; Hauke Hennecke (pp. 279-289).
At least five highly conserved, but disparately regulated groESL operons are present in Bradyrhizobium japonicum. Expression of groESL 3 is coregulated with symbiotic nitrogen fixation genes, implying a role of GroESL chaperonins in the nitrogen fixation process. Null mutants of individual groEL genes, however, were not impaired in symbiotic nitrogen fixation activity. By contrast, the groEL 3-plus-groEL 4 double mutant strain D4, which is mutated in those groEL genes that contribute most to the GroEL pool under symbiotic conditions, exhibited less than 5% Fix activity as compared to the wild-type. Expression of lacZ fusions made to several representative nif and fix genes was not, or only marginally, reduced in mutant D4, indicating that the requirement of chaperonins for nitrogen fixation does not occur at the level of RegSR-NifA-σ54- or FixLJ-FixK2-dependent gene regulation. Instead, immunoblot analyses revealed that the level of NifH and NifDK nitrogenase proteins was drastically decreased in extracts prepared from D4 bacteroids and from free-living cells grown anaerobically. Transcriptional fusions of the anaerobically induced groESL 3 promoter (P3) to all five B. japonicum groESL operons and also to groESL from Escherichia coli were integrated into the chromosome of mutant D4. Strains harboring P3 fused to groESL 1, groESL 2, groESL 5, or E. coli groESL partially complemented the symbiotic defect of mutant D4, whereas the wild-type phenotype was completely restored in strains complemented with P3 fused to groESL 3 (control) or groESL 4. Likewise, the growth defect of an E. coli groEL mutant could be corrected at least partially by individual B. japonicum groESL operons. In conclusion, both series of complementation analyses were not indicative of a strict substrate specificity of any of the B. japonicum groESL gene products, which is in good agreement with their high degree of sequence conservation.

Keywords: Key words Cpn60; groESL; Heat shock protein; Hsp60; NifA; Nitrogen fixation; Symbiosis

Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: