| Check out our New Publishers' Select for Free Articles |
Applied Biochemistry and Biotechnology: Part A: Enzyme Engineering and Biotechnology (v.90, #3)
Aromatic hydroxylation catalyzed by toluene 4-monooxygenase in organic solvent/aqueous buffer mixtures by Sheldon F. Oppenheim; Joey M. Studts; Brian G. Fox; Jonathan S. Dordick (pp. 187-197).
Toluene 4-monooxygenase is a four-protein component diiron enzyme complex. The enzyme catalyzes the hydroxylation of toluene to give p-cresol with ∼96% regioselectivity. The performance of the enzyme in two-phase reaction systems consisting of toluene, hexane, or perfluorohexane and an aqueous buffer was tested. In each of the cosolvent systems, containing up to 93% (v/v) of solvent, the enzyme was active and exhibited regioselectivity indistinguishable from the aqueous reaction. Using the perfluorohexane/buffer system, a number of polycyclic aromatic hydrocarbons were oxidized that were not readily oxidized in aqueous buffer. An instability of the hydroxylase component and a substantial uncoupling of NADH utilization and product formation were observed in reactions that were continued for longer than ∼3 min. More stable enzyme complexes will be needed for broad applicability of this hydroxylating system in nonaqueous media.
Keywords: Diiron enzyme; monooxygenase; organic cosolvents; regioselective hydroxylation
Lichenysin by Isabelle Grangemard; Jean Wallach; Regine Maget-Dana; Françoise Peypoux (pp. 199-210).
The lipopeptide lichenysin (cyclo-[L-Gln1→D-Leu2→L-Leu3→L-Val4→L-Asp5→D-Leu6→L-Ile7-β-OH fatty acid]) produced by Bacillus licheniformis structurally resembles surfactin from Bacillus subtilis. The main difference is the presence of a glutaminyl residue in position 1 of the peptide sequence in place of glutamic acid in surfactin. This local variation causes significant changes in the properties of the molecule compared to surfactin. Lichenysin has a higher surfactant power, the critical micellar concentration (c.m.c.) being strongly reduced from 220 to 22 µM and a much higher hemolytic activity because 100% hemolysis was observed with only 15 µM instead of 200 µM. Lichenysin is also a better chelating agent because its association constants with Ca2+ and Mg2+ are increased by a factor of 4 and 16, respectively. This effect is assigned to an increase in the accessibility of the carboxyl group to cations owing to a change in the side chain topology induced by the Glu/Gln exchange. Additionally, the propensity of the lipopeptide for extensive hydrophobic interactions, as illustrated by its low c.m.c., contributes to further stabilization of the cation and an increase in the partitioning of lichenysin into the erythrocyte membrane. Our data support the formation of a lichensyin-Ca2+ complex in a molar ratio of 2:1 instead of 1:1 with surfactin, suggesting an intermolecular salt bridge between two lichenysin molecules. Therefore, when Ca2+ ions are present in the solution, micellization occurs via a dimer assembly, with a possible long-range effect on the spatial arrangement of the micelles or other supramolecular structures. Finally, among all the surfactin peptidic variants so far known, lichenysin is the one for which the three tested activities are the most substantially improved.
Keywords: Surfactin; lichenysin; biosurfactant; lipopeptide; cation binding; hemolysis
Purification of α-amylases using magnetic alginate beads by Sunita Teotia; M. N. Gupta (pp. 211-220).
Magnetic alginate beads were used to purify α-amylases from porcine pancreas, starchzyme, BAN 240L (a commercial purification from Bacillus subtilis), and wheat germ. The beads bound a significant level of α-amylase activity from porcine pancreas, BAN 240L, and wheat germ. In each case, the enzyme activity could be eluted by using 1.0 M maltose, a known competitive inhibitor of α-amylase. In the case of BAN 240L, 3.6-fold purification with 72% recovery of activity was observed. In the case of wheat germ enzyme, starting from the crude extract, 48-fold purification with 70% activity recovery was observed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis also indicated considerable purification in the latter case.
Keywords: Affinity separation; α-amylase; magnetic alginate beads; macroaffinity ligands; wheat amylase
Conversion of ammonia to dinitrogen in wastewater by Nitrosomonas europaea by Niranjan Kumar Shrestha; Shigeru Hadano; Toshiaki Kamachi; Ichiro Okura (pp. 221-232).
Because Nitrosomonas europaea contains ammonia-oxidizing enzyme, nitrite reductase, and nitrous oxide reductase, the conversion of ammonia to dinitrogen was tried with different reaction conditions. In aerobic reaction conditions, ammonium was converted to nitrite (NO 2 − ), while under oxygen-limiting or oxygen-free conditions, NO 2 − -N formed from ammonia oxidation by N. europaea was reduced to N2O and dinitrogen with 22% conversion. During denitrification, optimal pH for the production of N2O and dinitrogen was found to be 7.0–8.0. Dinitrogen was not produced in acidic pH<7.0. A low partial oxygen pressure as well as oxygen-free conditions are favorable for high production of dinitrogen.
Keywords: Denitrification; dinitrogen; nitrous oxide; nitrification; Nitrosomonas europaea
Cooperativity and substrate specificity of an alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1 by Kamakshi P. Rajdevi; Ganesa Yogeeswaran (pp. 233-249).
The saccharifying alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1 hydrolyzes both α-(1,4)- and α-(1,6)-glycosidic linkages of different linear and branched polysaccharides. The following observations were made concerning the analysis of the coexpressed amylase and neopullulanase enzymes. Even though the enzymes were subjected to a rigorous purification protocol, the activities could not be separated, because both the enzymes were found to migrate in a single peak. By contrast, two independent bands of amylolytic activity at 70 kDa and pullulanolytic activity at 53 kDa were evident by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), reducing and nonreducing PAGE, and zymographic analysis on different polysaccharides. Preferential chemical modification of the enzyme and concomitant high-performance thin-layer chromatographic analyses of the saccharides liberated showed that amylase is sensitive to 1-(dimethylamino-propyl)-3-ethyl carbodiimide-HCl and cleaved α-(1,4) linkages of starch, amylose, and amylopectin producing predominantly maltotriose. On the other hand, formalin-sensitive neopullulanase acts on both α-(1,4) and α-(1,6) linkages of pullulan and starch with maltotriose and panose as major products. It is understood that neopullulanase exhibits dual activity and acts in synergy with amylase toward the hydrolysis of α-(1,4) linkages, thereby increasing the overall reaction rate; however, such a synergism is not seen in zymograms, in which the enzymes are physically separated during electrophoresis. It is presumed that SDS-protein intercalation dissociated the enzyme complex, without altering the individual active site architecture, with only the synergism lost. The optimum temperature and pH of amylase and neopullulanase were 60°C and 8.0, respectively. The enzymes were found stable in high alkaline pH for 24 h. Therefore, the saccharifying alkaline amylase and neopullulanase of M. halobius OR-1 evolved from tapioca cultivar shows a highly active and unique enzyme complex with several valuable biochemical features.
Keywords: Micrococcus ; substrate specificity; amylase; neopullulanase
Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass by Masahiro Kurakake; Wataru Kisaka; Kazuya Ouchi; Toshiaki Komaki (pp. 251-259).
Bagasse, corn husk, and switchgrass were pretreated with ammonia water to enhance enzymatic hydrolysis. The sample (2 g) was mixed with 1–6 mL ammonia water (25–28% ammonia) and autoclaved at 120°C for 20 min. After treatment, the product was vacuum-dried to remove ammonia gas. The dried solid could be used immediately in the enzymatic hydrolysis without washing. The enzymatic hydrolysis was effectively improved with more than 0.5 and 1 mL ammonia water/g for corn husk and bagasse, respectively. In bagasse, glucose, xylose, and xylobiose were the main products. The adsorption of CMCase and xylanase was related to the initial rate of enzymatic hydrolysis. In corn husks, arabinoxylan extracted by pretreatment was substantially unhydrolyzed because of the high ratio of arabinose to xylose (0.6). The carbohydrate yields from cellulose and hemicellulose were 72.9% and 82.4% in bagasse, and 86.2% and 91.9% in corn husk, respectively. The ammonia/water pretreatment also benefited from switchgrass (Miscanthus sinensis and Solidago altissima L.) hydrolysis.
Keywords: Corn husk; bagasse; switchgrass; pretreatment; ammonia water; cellulase
Phosphodiesterase production in an aqueous two-phase system by Nicotiana tabacum 1507 by Mladenka Ilieva; Atanas Pavlov; Anastasia Bacalova (pp. 261-272).
Studies were conducted on the production of phosphodiesterases by Nicotiana tabacum 1507 cell suspension in an aqueous two-phase system formed by adding 4% polyethylene glycol (mol wt 20,000) and 7.5% dextran (mol wt 70,000) to the medium. The time course of growth, biosynthesis, secretion, and partitioning of phosphodiesterases was followed in comparison with N. tabacum 1507 cultivation as a free suspension. Partitioning of phosphodiesterases took place mainly in the bottom dextran phase, and a possibility was revealed for obtaining an enzyme preparation with high phosphodiesterase activity.
Keywords: Aqueous two-phase system; Nicotiana tabacum 1507; phosphodiesterases; plant cell suspension culture
