Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

Aquatic Geochemistry (v.18, #2)


Impact of a Fluorine-Rich Granite Intrusion on Levels and Distribution of Fluoride in a Small Boreal Catchment by T. Berger; P. Peltola; H. Drake; M. Åström (pp. 77-94).
This paper explores the influence of a fluorine-rich granite on fluoride concentration in a small boreal catchment in northern Europe. The materials include stream water and shallow groundwater sampled in spatial and temporal dimensions, and analytical data on fluoride and a number of ancillary variables. Fluoride increased strongly towards the lower reaches of the catchment—at the stream outlet the concentrations were up to 4.2 mg L−1 and 1.6–4.7 times higher than upstream. Additionally, fluoride concentrations were particularly high in groundwater and small surface-water bodies (including quarries) above or in direct contact with the granite and showed a strong inverse correlation with water discharge in the stream. Taken together, these data and patterns pin-point the granite intrusion as the ultimate source, explaining the abundance and distribution of dissolved fluoride within the catchment. The granite most likely deliver fluoride to the stream by three mechanisms: (1) weathering of the fine fraction of glacial deposits, derived from the granite and associated fluorine-rich greisen alterations, (2) large relative input of baseflow, partially originating in the granite and greisen, into the lower reaches during low flow in particular, and (3) water-conducting fractures or fracture zones running through the fluorine-rich granite and greisen.

Keywords: Fluoride; Hydrogeochemistry; Boreal environment; Surface water; Shallow groundwater; Anorogenic granite


Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA by Michael M. Reddy; Anthony Hoch (pp. 95-113).
Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10–16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation “Rate (Δ mM/Δ min) = −0.0026 Ω + 0.0175 (r = 0.904, n = 10)” was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

Keywords: Pyramid Lake, Nevada, USA; Calcium carbonate; Nucleation; Calcium carbonate nucleation; Supersaturation; Mineral formation inhibition


Size Fractionation of Trace Elements in a Seasonally Stratified Boreal Lake: Control of Organic Matter and Iron Colloids by O. S. Pokrovsky; L. S. Shirokova; S. A. Zabelina; T. Ya. Vorobieva; O. Yu. Moreva; S. I. Klimov; A. V. Chupakov; N. V. Shorina; N. M. Kokryatskaya; S. Audry; J. Viers; C. Zoutien; R. Freydier (pp. 115-139).
The colloidal distribution and size fractionation of organic carbon and trace elements were studied in a seasonally stratified, organic-rich boreal lake, Lake Maselga, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 5 years in winter (glacial) and summer periods and during the spring and autumn overturn. A newly developed in situ dialysis technique (1, 10, and 50 kDa) and traditional frontal filtration and ultrafiltration (20, 10, 5, 0.22, and 0.025 μm) were used to assess element concentrations at different depths. No significant changes in element concentrations occurred during filtration through sub-colloidal pore-size membranes (20–0.22 μm), suggesting a negligible amount of particulate Fe, OC, and associated trace metals. Large colloids (0.025–0.22 μm) were found to be the main carriers of poorly soluble elements (Fe, Al, Ti, Zr, REEs, Th, and U) during the summer and winter stratification. There was also a clear change in the vertical pattern of the percentage of colloidal Al, Ti, V, Cr, Fe, and Ni during different seasons, and the greatest proportion of colloidal forms was observed during the spring and autumn overturn. This pattern is most likely linked to the dominance of soil (allochthonous) organic carbon, which complexes with trace metals during these periods. During the summer seasons, autochthonous production of small exometabolites or photodegradation increases the concentration of the low-molecular weight fractions (<1 kDa) that dominate the speciation of divalent heavy metals in surface horizons. The colloidal status of As (30–60%), which was documented in different seasons along the full depth of the water column, is most likely linked to the presence of organic complexes. The overall results of this study suggest that changes in the colloidal speciation of trace elements with depth in different seasons depend on changes in the redox conditions, the input of soil OM, the biodegradation of plankton biomass releasing dissolved organic matter in the bottom horizons, and in upward diffusion from the sediments.

Keywords: Trace element; Carbon; Lake; Boreal; Speciation; Colloids


Comparing Lignin-Derived Phenols, δ13C Values, OC/N Ratio and 14C Age Between Sediments in the Kaoping (Taiwan) and the Kapuas (Kalimantan, Indonesia) Rivers by Pei Sun Loh; Chen-Tung Arthur Chen; Jiann-Yuh Lou; Gusti Z. Anshari; Houng-Yung Chen; Jough-Tai Wang (pp. 141-158).
The Kaoping (Taiwan) and Kapuas (Indonesia) Rivers differ in hydrological cycle, topography and landscape. These differences strengthen the use of 14C dating, lignin-derived phenols, δ13C values and C/N ratios to determine the sources and diagenesis of surface sedimentary organic carbon (OC) in both rivers. The Kapuas River is surrounded by forest, resulting in sedimentary OC with a 14C age between 600 and 740 years, Λ (total lignin expressed as mg/100 mg OC) values from 0.94 to 3.70, δ13C values from −27.87 to −30.00‰, C/N ratios from 6.7 to 30.8, %OC from 0.63 to 9.24% and vanillic acid to vanillin ratio, (Ad/Al)v, values from 0.73 to 2.09, all of which indicate the presence of recent plant-derived organic matter. The tributaries and three locations upstream of the Kaoping River are also surrounded by forests, resulting in Λ values (0.51–4.80), δ13C values (−23.85 to −27.08‰), C/N ratios (14.1–28.7), %OC (1.01–7.86%) and (Ad/Al)v values (0.86–1.88), which are indicative of a terrestrial signal. No lignin oxidation products were detected in the mainstream of the Kaoping River or its coastal zone, hence the surface sediments OC with a 14C age between 4,915 and 15,870 years, enriched δ13C values (−23.30 and −26.54‰), lower C/N ratios (6.0–17.5) and lower %OC (0.15–2.24%) likely represent old rock and soil material. Massive floods during typhoons most probably cause plant materials from the Kaoping River and its coastal zone to be transported into the deep sea.

Keywords: Kaoping River; Kapuas River; Surface sediments; Organic carbon; Lignin-derived phenols


Texas Coastal Hypoxia Linked to Brazos River Discharge as Revealed by Oxygen Isotopes by Steven F. DiMarco; Josiah Strauss; Nelson May; Ruth L. Mullins-Perry; Ethan L. Grossman; David Shormann (pp. 159-181).
Hypoxic conditions in the coastal waters off Texas (USA) were observed since the late 1970s, but little is known about the causes of stratification that contribute to hypoxia formation. Typically, this hypoxia is attributed to downcoast (southwestward) advection of waters from the Mississippi–Atchafalaya River system. Here, we present evidence for a hypoxic event on the inner shelf of Texas coincident with the presence of freshwater linked to high flow of the Brazos River in Texas. These conclusions are based on hydrographic observations and isotopic measurements of waters on the inner shelf near the Brazos River mouth. These data characterize the development, breakdown, and dispersal of a hypoxic event lasting from June through September 2007 off the Texas coast. Oxygen isotope compositions of shelf water indicate that (1) discharge from the Brazos River was the principal source of freshwater and water column stratification during the 2007 event, and (2) during low Brazos River discharge in 2008, freshwater on the Texas shelf was derived mainly from the Mississippi–Atchafalaya River System. Based on these findings, we conclude that the Mississippi–Atchafalaya River System is not the sole cause of hypoxia in the northern Gulf of Mexico; however, more data are needed to determine the relative influence of the Texas versus Mississippi rivers during normal and low flow conditions of Texas rivers.

Keywords: Coastal hypoxia; Stratification; Oxygen isotopes; Continental shelf processes; Gulf of Mexico; Texas

Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: