| Check out our New Publishers' Select for Free Articles |
Aquatic Geochemistry (v.13, #2)
Using dual-isotope data to trace the origin and processes of dissolved sulphate: a case study in Calders stream (Llobregat basin, Spain) by Neus Otero; Àngels Canals; Albert Soler (pp. 109-126).
Whereas most of the reported δ34S values of dissolved sulphate are positive in the Llobregat basin, Calders stream, which is a tributary of the Llobregat River, is characterised by negative values. Stream waters, sampled monthly between 1997 and 1998, and quarterly in 1999, show an overall increase in δ34S from −10‰ to 0‰, coupled with an increase in Na and Cl concentration. On the other hand, the oxygen isotopic composition of dissolved sulphate, δ18O, displayed an opposite trend with a slight decrease, from +9‰ to +6‰. Detailed sampling up stream in November 2000 indicated that, contrary to most of the surficial waters of the Llobregat basin with a δ34SSO4 mainly controlled by evaporites, in Calders stream, sulphate is derived from pyrite oxidation. The dual-isotope approach, coupled with chemical data, allowed us to identify the contribution of 34S-rich sulphate effluents from anthropogenic sources, while mixing models, calculated between natural and anthropogenic sources, enabled us to estimate their contribution. Sudden increases of δ34S and δ18O of dissolved sulphate in stream waters are believed to be caused by a sulphate reduction process related to oil spillage. The long-term enrichment in δ34S, coupled with a decrease in δ18OSO4, from Jan-97 to Aug-99, is interpreted as a progressive increase in the contribution of pig manure.
Keywords: Sulphur; Oxygen; Isotopes; Water pollution; Fertilisers; Animal waste; River water
Changes of δ18O and δD along the Dousitu River, Inner Mongolia, China, and their evidence of river water evaporation by Qian Hui; Li Mengyao; Ji Yadong; Yang Bingchao; Zhao Zhenhong (pp. 127-142).
On the basis of the hydrogeology of the Dousitu River drainage basin, the changes of water flow rate, δ18O and δD along the Dousitu River are discussed according to measured and analytical results. Changes of flow rate along the Dousitu River agree well with groundwater level contours and the recharge and discharge of groundwater to the river. When compared with other types of water in the area, it is obvious that the 18O and D of river waters have experienced evaporation. The changes of δ18O and δD along the Dousitu River are mainly caused by combined effects of groundwater recharge and river water evaporation. The recharge of groundwater makes δ18O and δD of the river water decrease. Evaporation makes δ18O and δD of the river water increase. The evaporation fractions of the river water are calculated using the kinetic fractionation theory. Results showed as much as 10–30% of water was evaporated in different segments of Dousitu River.
Keywords: Dousitu River; Changes in river water flow rate; Changes of isotope composition; Evaporation fraction, China
Factors Controlling Sulfide Geochemistry in Sub-tropical Estuarine and Bay Sediments by John W. Morse; Heather Thomson; David W. Finneran (pp. 143-156).
The primary factors that control the concentration of total reduced (inorganic) sulfide in coastal sediments are believed to be the availability of reactive iron, dissolved sulfate and metabolizable organic carbon. We selected nine sites in shallow (<3 m), close to sub-tropical, estuaries and bays along the central Texas coast that represented a range in sediment grain size (a proxy for reactive iron), salinity (a proxy for dissolved sulfate), and total organic carbon (a proxy for metabolizable organic carbon). Based on these parameters a prediction was made of which factor was likely to control total reduced sulfide at each site and what the relative total reduced sulfide concentration was likely to be. To test the prediction, the sediments were analyzed for total reduced sulfide, acid volatile sulfide, and citrate dithionate-extractable, HCl-extractable and total Fe in the solid phase. Using solid-state gold–mercury amalgam microelectrodes and voltammetry, we determined pore water depth profiles of Fe(II) and ΣH2S and presence or absence of FeS(aq). At five of the nine sites the calculated degree of sufildization of citrate dithionite-reactive-iron was close to or greater than 1 indicating that rapidly reactive iron was probably the limiting factor for iron sulfide mineral formation. At one site (salinity = 0.9) dissolved Fe(II) was high, ΣH2S was undetectable and the total reduced sulfide concentration was low indicating sulfate limitation. At the last three sites a low degree of sulfidization and modest total reduced (inorganic) sulfide concentrations appeared to be the result of a limited supply of metabolizable organic carbon. Fe(II)–S(-II) clusters (FeS(aq)) were undetectable in 10 out of 12 bay sediment profiles where ΣH2S was close to or below detection limits, but was observed in all other porewater profiles. Acid volatile sulfide, but not total reduced sulfide, was well correlated with total organic carbon and ranged from being undetectable in some cores to representing a major portion of total reduced sulfide in other cores. Although predicted controls on total reduced sulfide were good for very low salinity water or sandy sediments, they were only right about half the time for the other sediments. The likely reasons for the wrong predictions are the poor correlation of total organic carbon with grain size and differing fractions of metabolizable organic carbon in different sedimentary environments. Differences in sediment accumulation rates may also play a role, but these are difficult to determine in this region where hurricanes often resuspend and move sediments. This study demonstrates the need to examine more complex and often difficult to determine parameters in anoxic “normal marine” sediments if we are to understand what controls the concentration and distribution of sulfides.
Keywords: Sulfide; Acid volatile sulfides; Iron; Estuary; Sediments; Diagenesis
Transient States in Diagenesis Following the Deposition of a Gravity Layer: Dynamics of O2, Mn, Fe and N-Species in Experimental Units by Gwénaëlle Chaillou; Pierre Anschutz; Carole Dubrulle; Pascal Lecroart (pp. 157-172).
Biogeochemical processes induced by the deposition of gravity layer in marine sediment were studied in a 295-day experiment. Combining voltammetric microelectrode measurements and conventional analytical techniques, the concentrations of C, O2, N-species, Mn and Fe have been determined in porewaters and sediments of experimental units. Dynamics of the major diagenetic species following the sudden sediment deposition of few cm-thick layer was explained by alternative diagenetic pathways whose relative importance in marine sediments is still a matter of debate. Time-series results indicated that the diffusion of O2 from overlying waters to sediments was efficient after the deposition event: anoxic conditions prevailed during the sedimentation. After a few days, a permanent oxic horizon was formed in the top few millimetres. At the same time, the oxidation of Mn2+ and then Fe2+, which diffused from anoxic sediments, contributed to the surficial enrichment of fresh Mn(III/IV)- and Fe(III)-oxides. Vertical diffusive fluxes and mass balance calculations indicated that a steady-state model described the dynamic of Mn despite the transitory nature of the system. This model was not adequate to describe Fe dynamics because of the multiple sources and phases of Fe2+. No significant transfer of Mn and Fe was observed between the underlying sediment and the new deposit: Mn- and Fe-oxides buried at the original interface acted as an oxidative barrier to reduced species that diffused from below. Nitrification processes led to the formation of a NO 3 − /NO 2 − rich horizon at the new oxic horizon. Over the experiment period, NO 3 − concentrations were also measured in the anoxic sediment suggesting anaerobic nitrate production.
Keywords: Diagenesis; Alternative biogeochemical pathways; Gravity deposit; Laboratory experiment; Microelectrodes; Sedimentary biogeochemistry
Metal Complexation with Different types of Soluble and Adsorbed Freshwater Ligands Followed by DPASV by Cidália Maria Sousa Botelho; Rui Alfredo Rocha Boaventura; Maria de Lurdes Sadler Simões Gonçalves (pp. 173-186).
In order to understand metal speciation in a polluted river (Este River, Northern Portugal) filtrate, freeze dried particles and organics desorbed from surfaces were titrated with Cd(II) and Zn(II), followed by differential pulse anodic stripping voltammetry (DPASV). The obtained results are compared with those previously published for Pb(II) and Cu(II). Due to the heterogeneity of the system, a continuous and a discrete ligand model were used to interpret the titration data. Two types of ligands could be detected and quantified by the discrete ligand model: small molecules with high affinities for cations such as Cd(II), Cu(I), and Zn(II) and macromolecules with higher affinities for Pb(II) and Cu(II). Small ligands were strongly adsorbed onto the particles, as inferred from the desorption of Zn(II) during titration with Pb(II) and Cd(II). The total concentrations of the different ligands and the complex formation constants with the different metals are reported.
Keywords: Cadmium; Zinc; Speciation; River water; Voltammetry
Hydrogeochemical and Flow Modeling of Aquitard Percolation in the Cariri Valley-Northeast Brazil by Carlos José Freire Machado; Maria Marlúcia Freitas Santiago; Luiz Alberto Ribeiro Mendonça; Horst Frischkorn; Josué Mendes Filho (pp. 187-196).
Flow modeling and hydrogeochemical inversion calculations were performed on the aquifer systems of the Crato-Juazeiro Graben in the Araripe Sedimentary Basin of the Cariri Valley, Northeast Brazil, in order to assess aquifer interconnections through an aquitard of the Araripe Plateau. Steady state hydraulic head numeric calculations with the finite difference method used Modflow software with hydrologically based boundary conditions and a piezometric surface as initial condition. Hydrogeochemical inversion with PHREEQC was performed for two water samples representing typical initial and final waters along the flow path. Flow simulation shows that approximately 20% of all recharge water from the superior aquifer system passes through the Santana aquitard reaching the middle aquifer system. Quantification of mineral dissolution/precipitation processes, ion exchange and microbiological redox reactions taking place in the aquifer systems also indicates hydraulic interconnection of the superior and middle aquifer systems through the Santana aquitard.
Keywords: Hydrogeochemistry; PHREEQC; Modflow; Araripe Sedimentary Basin; Cariri Valley
