|
|
Aquatic Geochemistry (v.10, #3-4)
Geomicrobiology of Blood Falls: An Iron-Rich Saline Discharge at the Terminus of the Taylor Glacier, Antarctica
by Jill A. Mikucki; Christine M. Foreman; Birgit Sattler; W. Berry Lyons; John C. Priscu (pp. 199-220).
Blood Falls, a saline subglacial discharge from the Taylor Glacier, Antarctica provides an example of the diverse physical and chemical niches available for life in the polar desert of the McMurdo Dry Valleys. Geochemical analysis of Blood Falls outflow resembles concentrated seawater remnant from the Pliocene intrusion of marine waters combined with products of weathering. The result is an iron-rich, salty seep at the terminus of Taylor Glacier, which is subject to episodic releases into permanently ice-covered Lake Bonney. Blood Falls influences the␣geochemistry of Lake Bonney, and provides organic carbon and viable microbes to the lake␣system. Here we present the first data on the geobiology of Blood Falls and relate it to␣the␣evolutionary history of this unique environment. The novel geological evolution of this␣subglacial environment makes Blood Falls an important site for the study of metabolic strategies␣in subglacial environments and the impact of subglacial efflux on associated lake ecosystems.
Keywords: Antarctica; McMurdo Dry Valleys; subglacial environment; saline lakes; pliocene sea; microbial diversity
Reach-Scale Cation Exchange Controls on Major Ion Chemistry of an Antarctic Glacial Meltwater Stream
by Michael N. Gooseff; Diane M. Mcknight; Robert L. Runkel (pp. 221-238).
McMurdo dry valleys of Antarctica represent the largest of the ice-free areas on the Antarctic continent, containing glaciers, meltwater streams, and closed basin lakes. Previous geochemical studies of dry valley streams and lakes have addressed chemical weathering reactions of hyporheic substrate and geochemical evolution of dry valley surface waters. We examine cation transport and exchange reactions during a stream tracer experiment in a dry valley glacial meltwater stream. The injection solution was composed of dissolved Li+, Na+, K+, and Cl-. Chloride behaved conservatively in this stream, but Li+, Na+, and K+ were reactive to varying degrees. Mass balance analysis indicates that relative to Cl-, Li+ and K+ were taken up in downstream transport and Na+ was released. Simulations of conservative and reactive (first-order uptake or generation) solute transport were made with the OTIS (one-dimensional solute transport with inflow and storage) model. Among the four experimental reaches of Green Creek, solute transport simulations reveal that Li+ was removed from stream water in all four reaches, K+ was released in two reaches, taken up in one reach, and Na+ was released in all four reaches. Hyporheic sediments appear to be variable with uptake of Li+ in two reaches, uptake of K+ in one reach, release of K+ in two reaches, and uptake of Na+ in one reach. Mass balances of the conservative and reactive simulations show that from 1.05 to 2.19 moles of Li+ was adsorbed per reach, but less than 0.3 moles of K+ and less than 0.9 moles of Na+ were released per reach. This suggests that either (1) exchange of another ion which was not analyzed in this experiment or (2) that both ion exchange and sorption control inorganic solute transport. The elevated cation concentrations introduced during the experiment are typical of initial flows in each flow season, which flush accumulated dry salts from the streambed. We propose that the bed sediments (which compose the hyporheic zone) modulate the flushing of these salts during initial flows each season, due to ion exchange and sorption reactions.
Keywords: ion exchange; major ion chemistry; McMurdo dry valleys; reactive solute transport; stream tracer experiment
Impact of Episodic Warming Events
by Christine M. Foreman; Craig F. Wolf; John C. Priscu (pp. 239-268).
Lakes in the Taylor Valley, Antarctica were investigated to determine the impact of a significant air temperature warming event that occurred during the austral summer of 2001–2002. The warming in the valleys caused an increase in glacial run-off, record stream discharge, an increase in lake levels, and thinning of the permanent ice covers. These changes in the physical environment drove subsequent changes in the biogeochemistry of the lakes. Primary production in West Lake Bonney during the flood was reduced 23% as a consequence of stream induced water column turbidity. Increased nutrient levels within the lakes occurred in the year following the temperature induced high flow year. For example, soluble reactive phosphorus loading to Lake Fryxell was four-fold greater than the long-term average loading rates. These high nutrient levels corresponded to an increase in primary production in the upper water columns of Lakes Bonney and Fryxell. Depth integrated chlorophyll-a values increased 149% in East Lake Bonney, 48% in West Lake Bonney, and showed little change in Lake Fryxell; chlorophyll-a in Lake Hoare decreased 18% compared to long-term averages recorded as part of our ten year monitoring program, presumably from a reduction in under-ice PAR caused by increased sediment loads on the ice cover. Overall the warming event served to “recharge” the ecosystem with liquid water and associated nutrients. Such “floods” may play an important role in the long-term maintenance of liquid water in these dry valley lakes.
Keywords: Antarctica; McMurdo Dry Valleys; lakes; stoichiometry; nutrients; climate change; production
Stable Carbon and Nitrogen Isotopic
by Jennifer Lawson; Peter T Doran; Fabien Kenig; David J Des marais; John C Priscu (pp. 269-301).
The perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are part of the coldest and driest ecosystem on earth. To understand lacustrine carbon and nitrogen cycling in this end-member ecosystem, and to define paleolimnological proxies for ice-covered lakes, we measured the stable carbon and nitrogen isotopic composition of particulate organic matter (POM) and benthic organic matter (BOM) within the lakes of Taylor Valley. The δ13C compositions of seasonally ice-free edges of the lakes (moats) are enriched relative to under-ice organic matter. Thus, the organic carbon isotopic composition of buried sediments may be a proxy for sample position within the lake. In the moats, δ13C values are governed by limited CO2diffusion across benthic cyanobacterial cell membranes. During a high glacial melt (2001–2002) season, both δ13CPOM and δ13CBOM in the moats were more depleted than during previous low melt years. We propose that this occurred in response to higher [CO2](aq) and/or reduced growth rates resulting from turbidity-induced light limitation. Though moats and under-ice environments are usually poorly connected, during the 2001–2002 season, the enrichment of the δ13CPOM values at 6 m depth in the stream-proximal sites relative to deep-profile sites implies enhanced connectivity between these environments. The δ13C compositions of BOM and POM profiles in Lake Hoare and Lake Fryxell indicate that these lakes are dominated by benthic productivity. In contrast, in Lake Bonney, the similarity of the δ13C values of BOM and POM indicates the pelagic component dominance in the carbon cycle.
Keywords: carbon stable isotope; nitrogen stable isotope; organic matter; limnology; Antarctica; dry valleys; Taylor Valley
Nickel, Copper, Zinc and Cadmium Cycling with Manganese in Lake Vanda (Wright Valley, Antarctica)
by William J. Green; Brian R. Stage; Bonnie Jo Bratina; Shannon Wagers; Adam Preston; Kevin O’bryan; Joseph Shacat; Silvia Newell (pp. 303-323).
Lake Vanda is a closed-basin, permanently ice-covered lake located in the Wright Valley of Antarctica. The lake’s more important geochemical features include the fact that it is fed by a single glacial melt water stream for only 6–8 weeks out of the year; that it has remained stratified for more than a millennium; and that, like other lakes in the region, it is remote from anthropogenic influence. These, together with the fact that it is among the least biologically productive lakes in the world, make it an ideal system for examining the transport, cycling and fate of trace metals in the aquatic environment. Like others before us, we view this lake as a natural geochemical laboratory, a flask in the desert. This paper presents the first set of closely spaced, vertical, profiles for dissolved and particulate Mn, Fe, Ni, Cu, Zn and Cd in the water column. Despite the absence of an outflow, metals in the fresh upper waters of the lake have extremely low concentrations, in the pico-molar to nano-molar range, and are partitioned largely into dissolved rather than particulate phases. Efficient metal scavenging by particles from these oxygen-rich waters is indicated. Significant increases in metal concentrations begin to appear at depth, between 57 and 60 m, and these increases coincide with the onset of manganese oxide dissolution in oxic, but lower pH waters. Vertical profiles suggest that the entire suite of trace metals (Ni, Cu, Zn, and Cd) is being released from manganese oxide carrier phases. Thermodynamic analysis indicates that Mn3O4 (i.e., the mineral hausmannite) may be important in metal sequestration and recycling in the deeper waters of Lake Vanda. Manganese-reducing organisms reported by Bratina et al. (1998) are active in the zone of metal release and these could also contribute to the observed cycling.
The Geochemistry of Lake Joyce, McMurdo Dry Valleys, Antarctica
by Joseph A. Shacat; William J. Green; Eric H. Decarlo; Silvia Newell (pp. 325-352).
Lake Joyce is one of the least studied lakes of the McMurdo Dry Valleys. Similar to other lakes in this region, Lake Joyce is a closed-basin, permanently ice-covered, meromictic lake. We present here a detailed investigation of major ions, nutrients, and dissolved trace elements for Lake Joyce. Specifically, we investigate the role of iron and manganese oxides and hydrous oxides in trace metal cycling.Lake Joyce is characterized by fresh, oxic waters overlying an anoxic brine, primarily Na–Cl. Surface waters have a maximum nitrate concentration of 26 μM with a molar dissolved inorganic nitrogen to phosphorus ratio of 477. The supply of nitrogen is attributed to atmospheric deposition, possibly from polar stratospheric clouds. Dissolved phosphorus is scavenged by hydrous iron oxides. The pH is highest (10.15) just beneath the 7-m thick ice cover and decreases to a minimum of 7.29 in the redox transition zone. Dissolved Al exceeds 8 μM in surface waters, and appears to be controlled by equilibrium with gibbsite. In contrast, concentrations of other trace elements in surface waters are quite low (e.g., 5.4 nM Cu, 0.19 nM Co, <20 pM La). Dissolved Fe, Mn, Ni and Cd were below our detection limits of 13 nM, 1. 8 nM, 4.7 nM and 15 pM (respectively) in surface waters. There was a 6-m vertical separation in the onset of Mn and Fe reduction, with dissolved Mn appearing higher in the water column than Fe. Based on thermodynamic calculations, dissolved Mn appears to be controlled by equilibrium with hausmannite (Mn3O4). Co tracks the Mn profile closely, suggesting Co(III) is bound in the lattice of Mn oxides, whereas the Ce profile is similar, yet the Ce anomaly suggests oxidative scavenging of Ce. Release of Cu, Ni, Cd and trivalent REE appears to be controlled by pH-induced desorption from Fe and Mn oxides, although Cu (and perhaps Ni) may be scavenged by organic matter in surface waters.
Keywords: Lake Joyce; trace metal cycling; Fe oxides; Mn oxides; rare earth elements; geochemistry; Antarctica; lakes; nutrients; major ions
The Helium Isotopic Chemistry of Lake Bonney, Taylor Valley, Antarctica: Timing of Late Holocene Climate Change in Antarctica
by Robert J. Poreda; Andrew G. Hunt; W. Berry Lyons; Kathleen A. Welch (pp. 353-371).
To better understand the long-term climate history of Antarctica, we studied Lake Bonney in Taylor Valley, Southern Victoria Land (78°S). Helium isotope ratios and He, Ne, Ar and N2 concentration data, obtained from hydrocasts in the East (ELB) and West (WLB) Lobes of Lake Bonney, provided important constraints on the lake’s Holocene evolution. Based on very low concentrations of Ar and N2 in the ELB bottom waters, ELB was free of ice until 200 ± 50 years ago. After which, low salinity water flowing over the sill from WLB to ELB, covered ELB and formed a perennial ice cover, inhibiting the exchange of gases with the atmosphere. In contrast to the ELB, the WLB retained an ice cover through the Holocene. The brine in the WLB bottom waters has meteoric N2 and Ar gas concentrations indicating that it has not been significantly modified by atmospheric exchange or ice formation. The helium concentrations in the deep water of WLB are the highest measured in non-thermal surface water. By fitting a diffusional loss to the 3He/4He, helium, and Cl profiles, we calculate a time of ∼3000 years for the initiation of flow over the sill separating the East and West Lobes. To supply this flux of helium to the lake, a helium-rich sediment beneath the lake must be providing the helium by diffusion. If at any time during the last million years the ice cover left WLB, there would be insufficient helium available to provide the current flux to WLB. The variations in water levels in Lake Bonney can be related to climatic events that have been documented within the Southern Victoria Land region and indicate that the lakes respond significantly to regional and, perhaps, global climate forcing.
Keywords: Lake Bonney; Holocene; helium isotopes; ice cover; diffusion model; age dating; Taylor Valley; Antarctica
|
|