Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

Aquatic Geochemistry (v.7, #4)

Editorial (pp. 237-237).

Calculation of the UV Absorption Spectra of As(III) Oxo- and Thio- Acids and Anions in Aqueous Solution and of PF3 in the Gas-phase by J. A. Tossell (pp. 239-254).
Changes in the UV spectra of As(OH)3 solutions with variations in pH and temperature have recently been used to determine the temperature dependence of the pKa of the acid. In previous studies I used quantum mechanical techniques to study changes in structure and vibrational spectra as a function of pH for arsenites and thioarsenites. I previously calculated UV spectra for ``molecular'' minerals, like realgar As4S4. Here I use a number of different quantum mechanical methods, both Hartree-Fock and density functional theory based, to calculate the UV spectra for both a related simple well-characterized gas-phase molecule PF3 and for As(OH)3 and As(SH)3 and their conjugate anions and some neutral and anionic oligomers in aqueous solution. For the monomeric species small numbers of water molecules have been explicitly included, in a supermolecule or microsolvation approach. I find that UV absorption energies accurate to a few tenths of an eV can be obtained both for gas- phase PF3 and for neutral arsenious acid in aqueous solution, for which the UV absorption maximum is calculated to occur around 6.5 eV, consistent with experiment. Accurate calculation of the UV energies for arsenite anions in aqueous solution is much more difficult, since basis set size and solvation effects are considerably larger than for the neutral molecules, but fairly reliable results can still be obtained. Deprotonation is found to reduce the lowest calculated UV transition energy by about half an eV. Oligomerization also reduces the lowest calculated UV energy by at least half an eV. Replacement of one or all the –OH groups by –SH groups reduces the lowest calculated UV energies by about 2 eV. UV excitation energies have been calculated for oligomeric species as large as As3E3(EH)3 and As4E6, where E = O, S, and may be useful for identifying such species in solution.

Keywords: UV spectra; oxoacids; thioacids; arsenites; quantum calculations


A Comparison of Fluvial Sediment Phosphorus (P) Chemistry in Relation to Location and Potential to Influence Stream P Concentrations by R. W. McDowell; A. N. Sharpley (pp. 255-265).
Fluvial sediments are subject to cyclic submersion during changes in stream flow, which can affect their phosphorus (P) sorptive capacity. As fluvial sediments play a major role in determining P concentrations in stream flow, we compared the P chemistry of exposed stream bank and submerged bed sediments from an agricultural catchment in central Pennsylvania, USA. Total P concentration was greater in bank (417 mg kg-1) than bed sediments (281 mg kg-1), but because bed sediments contained more sand-sized material, they could release more P and support a higher solution P concentration (0.043 mg l-1) than bank sediments (0.020 mg l-1). Phosphorus release was a function of Mehlich-3 soluble Fe in stream sediments (r > 0.65), reflecting redox processes in the fluvial system. In contrast, P sorption maxima of bank and bed sediments were related to Mehlich-3 soluble Al (r > 0.78) and organic matter concentration (r > 0.79). Overall, our research suggested that erosion of bank sediments should contribute less P and may be a sink for P in the stream system compared with resuspension of bed sediment. However, bank sediments may have the potential to be a large source of P in downstream reservoirs or lakes, where increased microbial activity and reducing conditions may solubilise sediment-bound P.

Keywords: stream; fluvial; sediment; phosphorus; kinetics; risk


Direct and Indirect pCO2 Measurements in a Wide Range of pCO2 and Salinity Values (The Scheldt Estuary) by Michel Frankignoulle; Alberto Vieira Borges (pp. 267-273).
Recent improvements in both Infra-red spectroscopy and equilibrator techniqueshave allowed to determine, for the first time, pCO2using simultaneously and continuously both the direct and indirect methods in an estuary where pCO2 values range from 500 to 8500 μatm and salinity from 0 to 30. Our results show that both methods are in excellent agreement in the wholeestuary (r2 = 0.999, n = 1075, p < 0.0001). Thus, the NBS (US National Bureau of Standards) scale, although inadequate for seawater samples, is appropriate for estuarine waters and can be applied with confidence to calculate pCO2.

Keywords: pH; estuaries; NBS Scale; pCO2 ; equilibrator; Infra-red Gas Analyser


Fluvial Geochemistry through a Short-Duration, Tropical-Cyclone Induced Discharge event in the Burdekin River and Hann Creek, North Queensland, Australia by Jan Alexander; Chris R. Fielding; Simon J. Wakefield; Mark T. George; Clare F. Cottnam (pp. 275-293).
The chemical composition of river water integrates a number of factors such as weathering, land use, climate, vegetation cover and human activity that individually affect its chemistry. Short term variations may also be significant. The Burdekin River, NE Australia, is an example of a class of tropical streams which experiences two to four orders of magnitude variation in discharge in response to seasonal but erratic monsoonal and cyclonic rainfall. In these systems individual discharge events last for days to weeks. Given the inherent difficulty sampling these events published data on water chemistry (and thus calculated fluxes and global budgets) may tend to be biased to low flow conditions. One such discharge event in February 1996 has been investigated for its impact on the chemistry of the water. Major cations (Na, Mg, K, Ca) all decreased in concentration as the water level rose, as did the minor elements Sr, Ba and U. Some other trace elements, notably Rb, Cr, Pb and REE were enriched in the peak flow waters. The flux of all measured elements increased substantially during the seven days of the discharge event. Such short term but significant events will have a major impact on the annual fluxes of elements delivered to the oceans from the land and global discharge budgets may need to take them into account when refining databases in the future.

Keywords: river chemistry; Queensland rivers; tropical-cyclone induced runoff; discharge variation

Contents to Volume 7 (pp. 295-297).
Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: