Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

Adsorption: Journal of the International Adsorption Society (v.3, #1)

Editorial by John D. Y. Ou (pp. 5-5).

Adsorption of nitrogen, methane, carbon monoxide, and their binary mixtures on aluminophosphate molecular sieves by L. Predescu; F. H. Tezel; S. Chopra (pp. 7-25).
Experimental isotherms describing the adsorption of pure N2, CH4 and CO in AlPO4-11, AlPO4-17, and AlPO4-18 were determined using the volumetric method at 40°C and at 23°C (AlPO4-11 only) over a pressure range up to 123 kPa, and subsequently fitted with the Langmuir or Freundlich equations, as well as the Flory-Huggins Vacancy Solution Theory equation. The capacities for the adsorbates investigated were found to depend on the geometry of the sieve pore size, as well as the molecular dimensions and the polority of the adsorbate involved. At 40°C and over the investigated pressure range, AlPO4-11 and AlPO4-17 adsorbed pure CH4 in the highest amounts, while AlPO4-18 had a slightly higher capacity for pure CO.The model parameters obtained by fitting the experimental pure-component isotherms permitted the prediction of binary adsorption information for the CO−N2, CH4−CO, and CH4−N2 gas mixtures at 101.3 kPa total pressure, using the Extended Langmuir Model, the Ideal Adsorbed Solution Theory, and/or the Flory-Huggins Vacancy Solution Theory for mixtures. An explanation of the behaviour predicted by each model for each adsorption system is attempted.

Keywords: AlPO4 molecular sieves; nitrogen adsorption; methane adsorption; carbon monoxide adsorption; binary adsorption isotherms


Zeolites modified by CuCl for separating CO from gas mixtures containing CO2 by Youchang Xie; Jiaping Zhang; Jianguo Qiu; Xianzhong Tong; Jinping Fu; Ge Yang; Haojie Yan; Youqi Tang (pp. 27-32).
Although zeolites such as NaY and 13X adsorb CO2 much more than CO, the adsorption amount of CO2 and CO can be reversed if the zeolites are modified with CuCl. When zeolite NaY or 13X is mixed with CuCl and heated, high CO adsorption selectivity and capacity can be obtained. Isotherms show the adsorbents have CO capacity much higher than CO2. This is because CuCl has dispersed onto the surface of the zeolites to form a monolayer after the heat treatment and the monolayer dispersed CuCl can provide tremendous Cu(I) to selective adsorb CO and inhibit the CO2 adsorption. The monolayer dispersion of CuCl is confirmed by XRD and EXAFS studies. The loading of CuCl on the zeolites has a threshold below which the CuCl forms monolayer after heating and crystalline phase of CuCl can not be detected by XRD. An adsorbent of CuCl/NaY with CuCl content closed to the monolayer capacity shows very high CO selective adsorbability for CO2, N2, H2 and CH4. At temperature higher than room temperature, the adsorbent has even better CO selectivity for CO2. Using the adsorbent, a single-stage 4 beds PSA process, working at 70°C and 0.4 MPa to 0.013 MPa, can obtain CO product with purity >99.5% and yield >85%.

Keywords: CO adsorbent; CO2 adsorption; zeolite modification; monolayer dispersion


Composite materials based on zeolite 4A for adsorption heat pumps by L. Pino; Yu. Aristov; G. Cacciola; G. Restuccia (pp. 33-40).
Some additives and binders were chosen for the preparation of 4A-zeolite-based composites with high equivalent thermal conductivity for heat pumps application. Additives (SiC, Si3N4, graphite) and binders (PTFE, Al(OH)3) were tested for their effectiveness in terms of equivalent thermal conductivity and maximum water adsorption capacity of the composites. The influence of the equivalent thermal conductivity of the composite adsorbents on the specific power of the heat pump was also calculated. Results show a significant improvement in the equivalent thermal conductivity of the composite samples which are prepared using aluminum hydroxide as binder, over that of zeolite pellet beds. Such composite materials could be used to build adsorption heat pumps with higher specific power and, consequently, with lower investment cost.

Keywords: adsorption heat pumps; equivalent thermal conductivity; zeolite


Convection-diffusion of solutes in dynamic media by Durgesh S. Vaidya; J. M. Nitsche; S. L. Diamond; Davida A. Kofke (pp. 41-54).
We investigate convective-diffusive transport of a solute through a medium with properties that can be externally modulated in space and time. In particular, we focus on the effect of a front—a sharp transition in the convective velocity (v) and diffusivity (D)—on the evolution of the solute concentration profile. Numerical results show that by suitably moving the front during the process an anti-dispersive effect may be realized, in which the solute accumulates in a thin region close to the moving boundary. Our computations take into account the realistic case of a front having a small but finite thickness, and we find that the width of the concentration profile scales as $$left( {1/sqrt {Pe} } ight)$$ , where Pe is the Péclet number. This is in sharp contrast to the 1/Pe scaling observed for the ideal case of the singular front assumed in previous work. The effect of the thickness of the front and the magnitude of the drop inv andD, on the solute concentration profile has also been studied. These results are relevant in order to implement and optimize protocols that apply an externally controlled moving boundary for the purpose of separation.We also present experimental results characterizing solute transport across a stationary front, expected to display many features needed in a model for moving fronts. The concentration profile of electrophoretically mobile BSA-FITC within the boundary layer at a polyacrylamde gel-buffer interface were visualized by epifluorescence microscopy. Measured boundary layer thickness exceeded that predicted for even a finite interface, indicating that the length scale associated with real boundaries is relevant to the modeling problem.

Keywords: liquid crystals; moving bed system; simulation; purification


Determination of the micropore volume distribution function of activated carbons by gas adsorption by Marc Frere; Roger Jadot; Jacques Bougard (pp. 55-65).
A new method for the determination of the micropore volume distribution function of activated carbons is presented. It is based on the treatment of pure gas adsorption isotherms by a theoretical model derived from the Hill-de Boer theory. Adsorption data (isotherms and heat curves) for carbon dioxide, ethane and ethylene on activated carbon (F30/470 CHEMVIRON CARBON) have been provided by a thermobalance coupled to a calorimeter (TG-DSC 111 SETARAM) at different temperatures (233, 273, 303 and 323 K) for pressures up to 100 kPa. Adsorption isotherms of carbon dioxide and ethane at 303 and 323 K have been used for the determination of the micropore volume distribution function of the activated carbon of interest. The knowledge of its structure has then allowed the simulation of adsorption isotherms and heats for the same adsorbates at the same temperatures as those experimentally studied. Similar calculations have been conducted for ethylene. Whatever the adsorbate (carbon dioxide and ethane used for the determination of the micropore volume distribution function or ethylene), the mean deviation between experimental and calculated isotherms does not exceed 4% at quasicritical and supercritical temperatures (303 and 323 K). In the same temperature conditions, discrepancies between calculation and experiment reach about 10% for adsorption heats. For both isotherms and heats, large discrepancies appear at low temperature (233 and 273 K). This method allows the determination of the micropore volume distribution function of activated carbons. The validity of the results is insured using several isotherms of several adsorbates and taking into account the calorimetric effect of the phenomenon. That is the reason why this method can also be seen as a new possible model for pure gas adsorption data prediction. This paper also presents a brief summary of the state of the art in this field.

Keywords: activated carbons; characterization of structure; equilibrium; heat of adsorption; theory


Preparation and characterization of bimodal porous carbons derived from a styrene-divinylbenzene copolymer by Weijiong Li; Theodore R. Semones; Jianping Li; Robert G. Jenkins (pp. 67-79).
A styrene/divinylbenzene copolymer has been used as precursor for making porous carbons with bimodal pore size distributions (i.e., with both microporosity and mesoporosity). Pretreatment of the as-received copolymer by mild oxidation in air, significantly increased the carbon yield after carbonization. Reactivity studies of the polymer-based chars to CO2 clearly show the influences of some important factors such as carbonization temperature, heating rate, soak time on char reactivities. Bimodal porous carbons were prepared by carbonization of the preoxidized styrene/divinylbenzene copolymer in N2, followed by activation in CO2 at different temperatures to different levels of burnoff. The pore structures of the porous carbons produced have been characterized by various techniques such as gas adsorption and mercury porosimetry. The surfaces of the porous carbons produced, and a commercial carbon adsorbent, have been modified with HNO3 and H2O2 treatment at various conditions. Characterization of the surface oxygen functionality, both quantitatively and qualitatively, has been achieved using techniques such as Linear Temperature Programed Desorption (LTPD) and selective neutralization of bases.

Keywords: porous carbons; activation; oxidation; surface oxygen groups; LTPD


Adsorbents from Waste materials by Attila Bóta; Krisztina László; Lajos György Nagy; Günter Subklew; Heide Schlimper; Milan J. Schwuger (pp. 81-91).
The possibility of using pyrolyzed wastes produced in already working incineration plants, as adsorbents for waste water treatment, was studied. Showing very poor adsorption properties, they were improved by steam activation technique used in the conventional activated carbon manufacturing. It is concluded that various organic waste materials can be converted to carbonaceous final products with a character similar to activated carbon. Their adsorption properties and pore size distribution are determined by the structure of the starting material. Although most of these samples have a low specific surface area, their pore volume is not negligible in the meso-and micropore range. Adsorption tests with model waste waters confirmed that adsorption properties are strongly influenced by the character of the suface. The adsorption capacity of these samples can be utilized for the treatment of strongly polluted industrial waste waters. Considering that the raw material ‘needed’ to manufacture these adsorbent is produced permanently and the adsorbents do not have to be regenerated, it might be worthwhile using these kinds of adsorbents in the primary treatment of industrial waste waters.

Keywords: activated carbon; solid organic waste


Activated carbon membrane for water treatments: Application to decolorization of coke furnace wastewater by Akiyoshi Sakoda; Takeshi Nomura; Motoyuki Suzuki (pp. 93-98).
An activated carbon membrane to be used in water treatments was developed and the decolorization of the coke furnace wastewater was successfully demonstrated as a model case. The activated carbon membrane was prepared by carbonizing poly-vinydenchloride (PVdC) and poly-vinylalcohol (PVA) microspheres aggregating on and within a ceramic pipe. The membrane developed in this work was suspected to have a bidispersed structure, which made it possible to play the roles of both a porous membrane having the molecular weight cut-off of about 10,000 and an activated carbon bed where the dissolved organics with low molecular weight could be adsorbed. The activated carbon membrane developed in this work appears to be useful for compact water treatment processes.

Keywords: activated carbon; membrane; carbon membrane; water treatment

Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: