Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

Applied Composite Materials: An International Journal for the Science and Application of Composite Materials (v.16, #1)


Effect of Structure on the Mechanical Behaviors of Three-Dimensional Spacer Fabric Composites by Min Li; Shaokai Wang; Zuoguang Zhang; Boming Wu (pp. 1-14).
Three-dimensional (3-D) spacer fabric composite is a newly developed sandwich structure, the reinforcement of which is integrally woven by advanced textile technique. Two facesheets of 3-D spacer fabric are connected by continuous fibers, named pile in the core, providing excellent properties like outstanding integrity, debonding resistance, light weight, good designability and so on. Usually the 3-D spacer fabric composite without extra reinforcement is a kind of core material. In comparison with the facesheet reinforced spacer fabric composite, here the composite without additional weaves is called mono-spacer fabric composite. In this paper, two kinds of mono-spacer fabric composites with integrated hollow cores have been developed, one with 8-shaped piles and the other with corrugated piles. The mechanical characteristics and the damage modes of these mono-spacer fabric composites under different load conditions have been investigated. Besides, effects of pile height, pile distribution density and pile structure on the composites mechanical performances were analyzed. It is shown that the mechanical performances of mono-spacer fabric composites can be widely adapted to the respective requirements through the choice of the structural factors.

Keywords: Composites; Spacer fabric; Mechanical performance; Pile


Characterising Mechanical Properties of Braided and Woven Textile Composite Beams by Benjamin Dauda; S. Olutunde Oyadiji; Prasad Potluri (pp. 15-31).
The focus of this paper is on the manufacture of textile composite beams and on the determination of their mechanical properties. This includes investigating the effects of fibre orientation on the mechanical properties of braided and woven textile composites. Composites were manufactured from nominally identical constituents and identical consolidation processes, leaving as the only variables, variations caused by the different fibre architecture of the preform. The repeatability and, hence, reliability of this approach is demonstrated. Results obtained show that fibre architecture affects composite strength and extensibility. Composites with woven preforms are practically linear up to catastrophic failure while composites with braided preforms exhibit non-linearity prior to failure. Also the mechanical properties of the textile composite beams were determined. Results show that by tailoring the braid angle and pick density of braided and woven composite performs, the mechanical properties of the composite beams can be controlled to suit end-use requirement.

Keywords: Composite; Young’s modulus; Tensile modulus; Flexural modulus; Tensile strength; Flexural strength; Braiding; Weaving


Describing the Flexural Behaviour of Cross-ply Laminates Under Cyclic Fatigue by Abderrahim El Mahi; Abderrezak Bezazi (pp. 33-53).
The objective of this work is to derive modelling of the fatigue behaviour of cross-ply laminates from the experimental results obtained in the case of three-point bending tests. Modelling the fatigue behaviour is based on the stiffness reduction of test specimens. Firstly, experimental results are described using interpolation functions. Then, the characteristic coefficients of these functions are studied as function of the laminate properties and loading conditions. This approach allows to predict the fatigue life of composite laminates while avoiding a large number of fatigue tests. Wöhler curves are used to compare the experimental and analytical results, and a good agreement is found between the results. Next, a simple approach is considered to define a damage parameter. It is based on the analogy between the mechanical behaviour and the fatigue damage evolution of composite laminates during fatigue tests. The developed models are applied to analyse the influence of constituents on the fatigue behaviour and damage development of composite materials under fatigue loading.

Keywords: Modelling; Composite; Laminate; Flexural


Rapid Processing of Net-Shape Thermoplastic Planar-Random Composite Preforms by S. T. Jespersen; F. Baudry; D. Schmäh; M. D. Wakeman; V. Michaud; P. Blanchard; R. E. Norris; J.-A. E. Månson (pp. 55-71).
A novel thermoplastic composite preforming and moulding process is investigated to target cost issues in textile composite processing associated with trim waste, and the limited mechanical properties of current bulk flow-moulding composites. The thermoplastic programmable powdered preforming process (TP-P4) uses commingled glass and polypropylene yarns, which are cut to length before air assisted deposition onto a vacuum screen, enabling local preform areal weight tailoring. The as-placed fibres are heat-set for improved handling before an optional preconsolidation stage. The preforms are then preheated and press formed to obtain the final part. The process stages are examined to optimize part quality and throughput versus processing parameters. A viable processing route is proposed with typical cycle times below 40 s (for a plate 0.5 × 0.5 m2, weighing 2 kg), enabling high production capacity from one line. The mechanical performance is shown to surpass that of 40 wt.% GMT and has properties equivalent to those of 40 wt.% GMTex at both 20°C and 80°C.

Keywords: Preforming; Net-shape; Thermoplastic composites; Stamp forming

Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: