Skip to content. Skip to navigation
Sections
Personal tools
You are here: Home
Featured Journal
Navigation
Site Search
 
Search only the current folder (and sub-folders)
Log in


Forgot your password?
New user?
Check out our New Publishers' Select for Free Articles
Journal Search

BBA - Gene Regulatory Mechanisms (v.1789, #9-10)

Editorial Board (pp. i).
Regulatory RNA elements by Michael N.G. James; Jiang Yin (pp. 493-494).

Cis-acting RNA elements in human and animal plus-strand RNA viruses by Ying Liu; Eckard Wimmer; Aniko V. Paul (pp. 495-517).
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5′- and 3′-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.

Keywords: Plus-strand RNA virus; RNA structure in plus-strand RNA virus; IRES element in picornavirus and other plus-strand RNA virus; Nontranslated region in plus-strand RNA virus


Bridging IRES elements in mRNAs to the eukaryotic translation apparatus by Kerry D. Fitzgerald; Bert L. Semler ⁎ (pp. 518-528).
IRES elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, ribosome-scanning model, the mechanism of IRES-mediated translation initiation is not well understood. IRES elements, first discovered in viral RNA genomes, were subsequently found in a subset of cellular RNAs as well. Interestingly, these cellular IRES-containing mRNAs appear to play important roles during conditions of cellular stress, development, and disease (e.g., cancer). It has been shown for viral IRESes that some require specific IRES trans-acting factors (ITAFs), while others require few if any additional proteins and can bind ribosomes directly. Current studies are aimed at elucidating the mechanism of IRES-mediated translation initiation and features that may be common or differ greatly among cellular and viral IRESes. This review will explore IRES elements as important RNA structures that function in both cellular and viral RNA translation and the significance of these structures in providing an alternative mechanism of eukaryotic translation initiation.

Keywords: Internal ribosome entry site (IRES); Cap-independent translation; Eukaryotic translation; IRES trans-acting factor (ITAF); RNA secondary structure


Internal translation initiation of picornaviruses and hepatitis C virus by Michael Niepmann ⁎ (pp. 529-541).
Picornaviruses and other positive-strand RNA viruses like hepatitis C virus (HCV) enter the cell with a single RNA genome that directly serves as the template for translation. Accordingly, the viral RNA genome needs to recruit the cellular translation machinery for viral protein synthesis. By the use of internal ribosome entry site (IRES) elements in their genomic RNAs, these viruses bypass translation competition with the bulk of capped cellular mRNAs and, moreover, establish the option to largely shut-down cellular protein synthesis. In this review, I discuss the structure and function of viral IRES elements, focusing on the recruitment of the cellular translation machinery by the IRES and on factors that may contribute to viral tissue tropism on the level of translation.

Keywords: IRES; FMDV; EMCV; Poliovirus; HAV; HCV; eIF; microRNA; miR-122; Picornavirus


Structural and functional diversity of viral IRESes by Laurent Balvay; Ricardo Soto Rifo; Emiliano P. Ricci; Didier Decimo; Théophile Ohlmann (pp. 542-557).
Some 20 years ago, the study of picornaviral RNA translation led to the characterization of an alternative mechanism of initiation by direct ribosome binding to the 5′ UTR. By using a bicistronic vector, it was shown that the 5′ UTR of the poliovirus (PV) or the Encephalomyelitis virus (EMCV) had the ability to bind the 43S preinitiation complex in a 5′ and cap-independent manner. This is rendered possible by an RNA domain called IRES for Internal Ribosome Entry Site which enables efficient translation of an mRNA lacking a 5′ cap structure. IRES elements have now been found in many different viral families where they often confer a selective advantage to allow ribosome recruitment under conditions where cap-dependent protein synthesis is severely repressed. In this review, we compare and contrast the structure and function of IRESes that are found within 4 distinct family of RNA positive stranded viruses which are the (i) Picornaviruses; (ii) Flaviviruses; (iii) Dicistroviruses; and (iv) Lentiviruses.

Keywords: Virus; Picornavirus; IRES; eIF4G; Translation initiation; eIF; HIV; Retrovirus; Flavivirus


IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry by Christopher U.T. Hellen ⁎ (pp. 558-570).
Translation of the genomes of several positive-sense RNA viruses follows end-independent initiation on an internal ribosomal entry site (IRES) in the viral mRNA. There are four major IRES groups, and despite major differences in the mechanisms that they use, one unifying characteristic is that each mechanism involves essential non-canonical interactions of the IRES with components of the canonical translational apparatus. Thus the ∼200nt.-long Type 4 IRESs (epitomized by Cricket paralysis virus) bind directly to the intersubunit space on the ribosomal 40S subunit, followed by joining to a 60S subunit to form active ribosomes by a factor-independent mechanism. The ∼300nt.-long type 3 IRESs (epitomized by Hepatitis C virus) binds independently to eukaryotic initiation factor (eIF) 3, and to the solvent-accessible surface and E-site of the 40S subunit: addition of eIF2-GTP/initiator tRNA is sufficient to form a 48S complex that can join a 60S subunit in an eIF5/eIF5B-mediated reaction to form an active ribosome. Recent cryo-electron microscopy and biochemical analyses have revealed a second general characteristic of the mechanisms of initiation on Type 3 and Type 4 IRESs. Both classes of IRES induce similar conformational changes in the ribosome that influence entry, positioning and fixation of mRNA in the ribosomal decoding channel. HCV-like IRESs also stabilize binding of initiator tRNA in the peptidyl (P) site of the 40S subunit, whereas Type 4 IRESs induce changes in the ribosome that likely promote subsequent steps in the translation process, including subunit joining and elongation.

Keywords: Cricket paralysis virus; Classical swine fever virus; Hepatitis C virus; IRES; Ribosome; Translation initiation


RNA conformational changes in the life cycles of RNA viruses, viroids, and virus-associated RNAs by Anne E. Simon; Lee Gehrke (pp. 571-583).
The rugged nature of the RNA structural free energy landscape allows cellular RNAs to respond to environmental conditions or fluctuating levels of effector molecules by undergoing dynamic conformational changes that switch on or off activities such as catalysis, transcription or translation. Infectious RNAs must also temporally control incompatible activities and rapidly complete their life cycle before being targeted by cellular defenses. Viral genomic RNAs must switch between translation and replication, and untranslated subviral RNAs must control other activities such as RNA editing or self-cleavage. Unlike well characterized riboswitches in cellular RNAs, the control of infectious RNA activities by altering the configuration of functional RNA domains has only recently been recognized. In this review, we will present some of these molecular rearrangements found in RNA viruses, viroids and virus-associated RNAs, relating how these dynamic regions were discovered, the activities that might be regulated, and what factors or conditions might cause a switch between conformations.

Keywords: RNA structure; RNA structural switch; RNA–protein interaction; RNA pseudoknot; RNA virus replication; RNA processing


A switch in time: Detailing the life of a riboswitch by Andrew D. Garst; Robert T. Batey (pp. 584-591).
Riboswitches are non-protein coding RNA elements typically found in the 5′ untranslated region (5′-UTR) of mRNAs that utilize metabolite binding to control expression of their own transcript. The RNA–ligand interaction causes conformational changes in the RNA that direct the cotranscriptional folding of a downstream secondary structural switch that interfaces with the expression machinery. This review describes the structural themes common to the different RNA–metabolite complexes studied to date and conclusions that can be made regarding how these RNAs efficiently couple metabolite binding to gene regulation. Emphasis is placed on the temporal aspects of riboswitch regulation that are central to the function of these RNAs and the need to augment the wealth of data on metabolite receptor domains with further studies on the full regulatory element, particularly in the context of transcription .

Keywords: Riboswitch; Metabolite binding; Cotranscriptional folding; Gene expression


Amino acid recognition and gene regulation by riboswitches by Alexander Serganov; Dinshaw J. Patel (pp. 592-611).
Riboswitches specifically control expression of genes predominantly involved in biosynthesis, catabolism and transport of various cellular metabolites in organisms from all three kingdoms of life. Among many classes of identified riboswitches, two riboswitches respond to amino acids lysine and glycine to date. Though these riboswitches recognize small compounds, they both belong to the largest riboswitches and have unique structural and functional characteristics. In this review, we attempt to characterize molecular recognition principles employed by amino acid-responsive riboswitches to selectively bind their cognate ligands and to effectively perform a gene regulation function. We summarize up-to-date biochemical and genetic data available for the lysine and glycine riboswitches and correlate these results with recent high-resolution structural information obtained for the lysine riboswitch. We also discuss the contribution of lysine riboswitches to antibiotic resistance and outline potential applications of riboswitches in biotechnology and medicine.

Keywords: Lysine riboswitch; Glycine riboswitch; RNA structure; X-ray crystallography


A structural view on the mechanism of the ribosome-catalyzed peptide bond formation by Miljan Simonović ⁎; Thomas A. Steitz ⁎ (pp. 612-623).
The ribosome is a large ribonucleoprotein particle that translates genetic information encoded in mRNA into specific proteins. Its highly conserved active site, the peptidyl-transferase center (PTC), is located on the large (50S) ribosomal subunit and is comprised solely of rRNA, which makes the ribosome the only natural ribozyme with polymerase activity. The last decade witnessed a rapid accumulation of atomic-resolution structural data on both ribosomal subunits as well as on the entire ribosome. This has allowed studies on the mechanism of peptide bond formation at a level of detail that surpasses that for the classical protein enzymes. A current understanding of the mechanism of the ribosome-catalyzed peptide bond formation is the focus of this review. Implications on the mechanism of peptide release are discussed as well.

Keywords: 50S subunit; 70S ribosome; Peptidyl-transferase center; Peptide bond formation; Peptide release; Ribozyme


Spliceosome structure: Piece by piece by Dustin B. Ritchie; Matthew J. Schellenberg; Andrew M. MacMillan (pp. 624-633).
Processing of pre-mRNAs by RNA splicing is an essential step in the maturation of protein coding RNAs in eukaryotes. Structural studies of the cellular splicing machinery, the spliceosome, are a major challenge in structural biology due to the size and complexity of the splicing ensemble. Specifically, the structural details of splice site recognition and the architecture of the spliceosome active site are poorly understood. X-ray and NMR techniques have been successfully used to address these questions defining the structure of individual domains, isolated splicing proteins, spliceosomal RNA fragments and recently the U1 snRNP multiprotein·RNA complex. These results combined with extant biochemical and genetic data have yielded important insights as well as posing fresh questions with respect to the regulation and mechanism of this critical gene regulatory process.

Keywords: Spliceosome; Structure; X-ray; NMR; EM


Structure and function of regulatory RNA elements: Ribozymes that regulate gene expression by William G. Scott; Monika Martick; Young-In Chi (pp. 634-641).
Since their discovery in the 1980s, it has gradually become apparent that there are several functional classes of naturally occurring ribozymes. These include ribozymes that mediate RNA splicing (the Group I and Group II introns, and possibly the RNA components of the spliceosome), RNA processing ribozymes (RNase P, which cleaves precursor tRNAs and other structural RNA precursors), the peptidyl transferase center of the ribosome, and small, self-cleaving genomic ribozymes (including the hammerhead, hairpin, HDV and VS ribozymes). The most recently discovered functional class of ribozymes include those that are embedded in the untranslated regions of mature mRNAs that regulate the gene's translational expression. These include the prokaryotic glmS ribozyme, a bacterial riboswitch, and a variant of the hammerhead ribozyme, which has been found embedded in mammalian mRNAs. With the discovery of a mammalian riboswitch ribozyme, the question of how an embedded hammerhead ribozyme's switching mechanism works becomes a compelling question. Recent structural results suggest several possibilities.

Keywords: Ribozyme; Riboswitch; RNA gene regulation


A structural perspective of the protein–RNA interactions involved in virus-induced RNA silencing and its suppression by Jing Yang; Y. Adam Yuan ⁎ (pp. 642-652).
Small RNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-associated interfering RNAs (piRNAs), are powerful gene expression regulators. This RNA-mediated regulation results in sequence-specific inhibition of gene expression by translational repression and/or mRNA degradation. siRNAs and miRNAs are generated by RNase III enzymes and subsequently loaded into Argonaute protein, a key component of the RNA induced silencing complex (RISC), to form the core of the RNA silencing machinery. RNA silencing acts as an ancient cell defense system against molecular parasites, such as transgenes, viruses and transposons. RNA silencing also plays an important role in the control of development. In plants, RNA silencing serves as a potent antiviral defense system. In response, many viruses have developed strategies to suppress RNA silencing. The striking sequence diversity among viral suppressors suggests that different viral suppressors could target different components of the RNA silencing machinery at different steps in different suppressing modes. Significant progresses have been made in this field for the past 5 years on the basis of structural information derived from RNase III family proteins, Dicer fragments and homologs, Argonaute homologs and viral suppressors. In this paper, we will review the current progress on the understanding of molecular mechanisms of RNA silencing; highlight the structural principles determining the protein–RNA recognition events along the RNA silencing pathways and the suppression mechanisms displayed by viral suppressors.

Keywords: Structural biology; RNA silencing; Small RNA; RNase III enzyme; Argonaute; Viral suppressor


Getting to the end of RNA: Structural analysis of protein recognition of 5′ and 3′ termini by Stephen Curry ⁎; Olga Kotik-Kogan; Maria R. Conte; Peter Brick (pp. 653-666).
The specific recognition by proteins of the 5′ and 3′ ends of RNA molecules is an important facet of many cellular processes, including RNA maturation, regulation of translation initiation and control of gene expression by degradation and RNA interference. The aim of this review is to survey recent structural analyses of protein binding domains that specifically bind to the extreme 5′ or 3′ termini of RNA. For reasons of space and because their interactions are also governed by catalytic considerations, we have excluded enzymes that modify the 5′ and 3′ extremities of RNA. It is clear that there is enormous structural diversity among the proteins that have evolved to bind to the ends of RNA molecules. Moreover, they commonly exhibit conformational flexibility that appears to be important for binding and regulation of the interaction. This flexibility has sometimes complicated the interpretation of structural results and presents significant challenges for future investigations.

Keywords: RNA; 5′-terminus; 3′-terminus; Protein–RNA interaction; Translational control; RNA interference; RNA maturation; Protein crystallography; NMR


The Toll-like receptor 3:dsRNA signaling complex by Istvan Botos; Lin Liu; Yan Wang; David M. Segal; David R. Davies (pp. 667-674).
Toll-like receptors (TLRs) recognize conserved molecular patterns in invading pathogens and trigger innate immune responses. TLR3 recognizes dsRNA, a molecular signature of most viruses via its ectodomain (ECD). The TLR3-ECD structure consists of a 23 turn coil bent into the shape of a horseshoe with specialized domains capping the N and C-terminal ends of the coil. TLR3-ECDs bind as dimeric units to dsRNA oligonucleotides of at least 45 bp in length, the minimal length required for signal transduction. X-ray analysis has shown that each TLR3-ECD of a dimer binds dsRNA at two sites located at opposite ends of the TLR3 “horseshoe” on the one lateral face that lacks N-linked glycans. Intermolecular contacts between the C-terminal domains of two TLR3-ECDs stabilize the dimer and position the C-terminal residues within 20–25 Å of each other, which is thought to be essential for transducing a signal across the plasma membrane in intact TLR3 molecules. Interestingly, in TLRs 1, 2 and 4, which bind lipid ligands using very different interactions from TLR3, the ligands nevertheless promote the formation of a dimer in which the same two lateral surfaces as in the TLR3-ECD:dsRNA complex face each other, bringing their C-termini in close proximity. Thus, a pattern is emerging in which pathogen-derived substances bind to TLR-ECDs, thereby promoting the formation of a dimer in which the glycan-free ligand binding surfaces face each other and the two C-termini are brought in close proximity for signal transduction.

Keywords: Toll-like receptor; Innate immunity; Inflammation; Leucine-rich repeat; dsRNA; Pattern recognition receptor

Featured Book
Web Search

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: