|
|
BBA - Proteins and Proteomics (v.1751, #1)
Membrane-associated zinc peptidase families: comparing ACE and ACE2
by J.L. Guy; D.W. Lambert; F.J. Warner; N.M. Hooper; A.J. Turner (pp. 2-8).
In contrast to the relatively ubiquitous angiotensin-converting enzyme (ACE), expression of the mammalian ACE homologue, ACE2, was initially described in the heart, kidney and testis. ACE2 is a type I integral membrane protein with its active site domain exposed to the extracellular surface of endothelial cells and the renal tubular epithelium. Here ACE2 is poised to metabolise circulating peptides which may include angiotensin II, a potent vasoconstrictor and the product of angiotensin I cleavage by ACE. To this end, ACE2 may counterbalance the effects of ACE within the renin–angiotensin system (RAS). Indeed, ACE2 has been implicated in the regulation of heart and renal function where it is proposed to control the levels of angiotensin II relative to its hypotensive metabolite, angiotensin-(1–7). The recent solution of the structure of ACE2, and ACE, has provided new insight into the substrate and inhibitor profiles of these two key regulators of the RAS. As the complexity of this crucial pathway is unravelled, there is a growing interest in the therapeutic potential of agents that modulate the activity of ACE2.
Keywords: Abbreviations; ACE; angiotensin-converting enzyme; CP-A; carboxypeptidase-A; CoV; coronavirus; NEP; neutral endopeptidase/neprilysin; QTL; quantitative trait locus; RAS; renin–angiotensin system; SARS; severe acute respiratory syndrome; SNP; single nucleotide polymorphism; SHR; spontaneous hypertensive ratMetallopeptidase; Angiotensin; SARS; Coronavirus; Structure
The oxytocinase subfamily of M1 aminopeptidases
by Masafumi Tsujimoto; Akira Hattori (pp. 9-18).
The placental leucine aminopeptidase (P-LAP), adipocyte-derived leucine aminopeptidase (A-LAP) and leukocyte-derived aminopeptidase (L-RAP) belong to one distinct group of the M1 family of amimopeptidases, which we term the “Oxytocinase subfamily�. They share HEXXH(X)18E Zn-binding and GAMEN motifs essential for the enzymatic activities. Intracellular localization is the characteristic feature of the subfamily members. While P-LAP is translocated from intracellular vesicles to plasma membrane in a stimulus-dependent manner, both A-LAP and L-RAP are retained in the endoplasmic reticulum. They contain sequences necessary for the specific localization in the cell. It is getting evident that the subfamily members play important roles in the maintenance of homeostasis including maintenance of normal pregnancy, memory retention, blood pressure regulation and antigen presentation. In this review, current situation of this newly identified subfamily is summarized.
Keywords: Aminopeptidase; Antigen presentation; Glucose transporter 4; M1 family; Oxytocinase subfamily
Gene regulation and physiological function of placental leucine aminopeptidase/oxytocinase during pregnancy
by Seiji Nomura; Tomomi Ito; Eiko Yamamoto; Seiji Sumigama; Akira Iwase; Mayumi Okada; Kiyosumi Shibata; Hisao Ando; Kazuhiko Ino; Fumitaka Kikkawa; Shigehiko Mizutani (pp. 19-25).
Human pregnancy serum and placenta have the ability to degrade uterotonic peptide oxytocin (OT). Placental leucine aminopeptidase (P-LAP), which is also called cystine aminopeptidase, is the only membrane aminopeptidase known to functionally degrade OT as oxytocinase (OTase). P-LAP/OTase hydrolyzes several peptides other than OT including vasopressin and angiotensin III. P-LAP/OTase predicted from cDNA sequence is a type II integral membrane protein, which is converted to a soluble form existing in maternal serum by metalloproteases, possibly ADAM (a disintegrin and metalloproteinase) members. P-LAP/OTase activity increases with normal gestation, while decreases in the patients with preterm delivery and severe preeclampsia. In placenta, P-LAP/OTase is predominantly expressed in differentiated trophoblasts, syncytiotrophoblasts. Activator protein-2 (AP-2) and Ikaros transcription factors play significant roles in exerting high promoter activity of P-LAP/OTase in the trophoblastic cells. Moreover, P-LAP/OTase is transcriptionally regulated in a trophoblast-differentiation-dependent fashion via up-regulation of AP-2, putatively AP-2α. P-LAP/OTase may be involved in maintaining pregnancy homeostasis via metabolizing peptides such as OT and vasopressin.
Keywords: Aminopeptidase; Oxytocin; Placenta; Pregnancy; Transcriptional regulation; Trophoblast differentiation
Regulation of human extravillous trophoblast function by membrane-bound peptidases
by Hiroshi Fujiwara; Toshihiro Higuchi; Yukiyasu Sato; Yoshihiro Nishioka; Bin-Xiang Zeng; Shinya Yoshioka; Keiji Tatsumi; Masamichi Ueda; Michiyuki Maeda (pp. 26-32).
During human placentation, the invasion of extravillous trophoblasts (EVTs) into maternal decidual tissues, especially toward maternal spiral arteries, is considered an essential process for subsequent normal fetal development. However, the precise regulatory mechanisms to induce EVT invasion toward arteries and/or to protect EVTs from further invasion have not been well understood. Recently, we found that two cell surface peptidases, dipeptidyl peptidase IV (DPPIV) and carboxypeptidase-M (CP-M,) are differentially expressed on EVTs. DPPIV expression was mainly observed on EVTs that had already ceased invasion. CP-M was detected on migrating EVTs including endovascular trophoblasts in the maternal arteries. The enzymatic inhibition of these peptidases affected the invasive property of choriocarcinoma-derived cell lines, BeWo and JEG3 cells. In addition, a chemokine, RANTES, that is one of the substrates for DPPIV, enhanced invasion of EVTs isolated from primary villous explant culture and its receptor, CCR1, was specifically expressed on migrating EVTs toward maternal arteries. Furthermore, a novel membrane-bound cell surface peptidase, named laeverin, was found to be specifically expressed on EVTs that had almost ceased invasion. These findings suggest that membrane-bound peptidases are important factors regulating EVT invasion during early placentation in humans.
Keywords: Extravillous trophoblast; Dipeptidyl peptidase IV; Carboxypeptidase-M; Chemokine; Laeverin; Monoclonal antibody
Type 2 diabetes—Therapy with dipeptidyl peptidase IV inhibitors
by Hans-Ulrich Demuth; Christopher H.S. McIntosh; Raymond A. Pederson (pp. 33-44).
The sole application of an inhibitor of the dipeptidyl peptidase DP IV (also DP 4, CD26, DPP-IV or DPP-4) to a mammal subsequently leading to improved glucose tolerance marks a major breakthrough in metabolic research bearing the potential of a new revolutionary diabetes therapy.This was demonstrated in rat applying the specific DP IV inhibitor isoleucyl thiazolidine. It was published in 1996 for the first time that a specific DP IV inhibitor in a given dose was able to completely block glucagon-like peptide-1 (GLP-1) degradation in vivo resulting in improved insulin response accompanied, by accelerated peripheral glucose disposal. Later on, these results were confirmed by several research teams applying DP IV inhibitors intravenously or orally.Today, the DP IV inhibition for the treatment of metabolic disorders is a validated principle. Now, more than 10 years after the initial animal experiments, first DP IV inhibitors as investigational drugs are tested in phase 3 clinical trials.
Keywords: Dipeptidyl peptidase; Type 2 diabetes; GLP-1; GIP; Inhibitor; Inhibition; Drug development
Dipeptidyl peptidase IV in tumor progression
by Fumitaka Kikkawa; Hiroaki Kajiyama; Kiyosumi Shibata; Kazuhiko Ino; Seiji Nomura; Shigehiko Mizutani (pp. 45-51).
Dipeptidyl peptidase IV (DPPIV) is a 110-kDa glycoprotein with ubiquitous expression. Several recent studies have shown that DPPIV affects tumor progression in several human malignancies. We found that ovarian carcinoma cell lines with higher DPPIV expression showed less invasive potential. Furthermore, introduction of DPPIV cDNA into SKOV3 cells (SKDPIV), derived from serous cystadenocarcinoma showing little DPPIV expression, caused a significant decrease in both migration and invasive potential. In addition, nude mice inoculated with SKDPIV cells showed significantly less peritoneal dissemination and longer survival time than those inoculated with parental or vector-transfected cells. We further examined the mechanisms of anti-invasive ability of DPPIV. The expression of E-cadherin was positively correlated with DPPIV expression among five independent ovarian carcinoma cell lines. The SKDPIV cells showed enhanced expression of E-cadherin with a cellular morphological change from a fibroblastic and motile phenotype to an epithelial phenotype compared to parental and MOCK cells. In addition, matrix metalloproteinase 2 (MMP-2) and membrane type 1 matrix metalloprotease (MT1-MMP), which are important markers associated with invasive and metastatic potential, were remarkably reduced in SKDPIV cells. In contrast, tissue inhibitors of matrix metalloproteinases (TIMPs) were enhanced by DPPIV transfection. These findings imply that DPPIV may functionally suppress peritoneal dissemination and progression of ovarian carcinoma by regulating the expression levels of several molecules associated with carcinoma cell invasion and progression.
Keywords: Dipeptidyl peptidase IV (DPPIV); Peritoneal dissemination; Invasion; Ovarian carcinoma
Involvement of neutral endopeptidase in neoplastic progression
by Makoto Sumitomo; Ruoqian Shen; David M. Nanus (pp. 52-59).
Neutral endopeptidase 24.11 (NEP) is a 90–110 kDa cell surface cell surface peptidase that is normally expressed by numerous tissues, including prostate, kidney, intestine, endometrium, adrenal glands and lung. This enzyme cleaves peptide bonds on the amino side of hydrophobic amino acids and inactivates a variety of physiologically active peptides, including atrial natriuretic factor, substance P, bradykinin, oxytocin, Leu- and Met-enkephalins, neurotensin, bombesin, endothelin-1, and bombesin-like peptides. NEP reduces the local concentration of peptide available for receptor binding and signal transduction. Loss or decreases in NEP expression have been reported in a variety of malignancies. Reduced NEP may promote peptide-mediated proliferation by allowing accumulation of higher peptide concentrations at the cell surface, and facilitate the development or progression of neoplasia. We have used prostate cancer as model in which to study the involvement of NEP in malignancy. Using a variety of experimental approaches, including recombinant NEP, cell lines expressing wild-type and mutant NEP protein, and cell lines expressing NEP protein with a mutated cytoplasmic domain, we have examined the effects of NEP on cell migration and cell survival. We have shown that the effects of NEP are mediated by its ability to catalytically inactivate substrates such as bombesin and endothelin-1, but also through direct protein–protein interaction with other protein such as Lyn kinase [which associates with the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in NEP-Lyn-PI3-K protein complex], ezrin/radixin/moesin (ERM) proteins, and the PTEN tumor suppressor protein. We review the mechanisms of NEP's tumor suppressive action and how NEP loss contributes to tumor progression.
Keywords: Bombesin; Cell migration; Cell survival; Endothelin-1; Neutral endopeptidase; Prostate cancer; Tumor suppressor
Understanding molecular mechanisms of proteolysis in Alzheimer's disease: Progress toward therapeutic interventions
by Makoto Higuchi; Nobuhisa Iwata; Takaomi C. Saido (pp. 60-67).
Amyloid beta peptide (Aβ) is not only a major constituent of extracellular fibrillary pathologies in Alzheimer's disease (AD) brains, but is also physiologically produced and metabolized in neurons. This fact led us to the notion that an age-related decrease in Aβ catabolism may contribute to the molecular pathogenesis of AD, providing a rationale for seeking proteolytic enzymes that degrade Aβ in the brain. Our recent studies have demonstrated that neprilysin is the most potent Aβ-degrading enzyme in vivo. Deficiency of endogenous neprilysin elevates the level of Aβ in brains of neprilysin-knockout mice in a gene dose-dependent manner, and an age-associated decline of neprilysin occurs in several regions of mouse brain. Neuropathological alterations in these same regions have been implicated in cognitive impairments of AD patients at an early stage of the disease. Furthermore, the level of neprilysin mRNA has been found to be significantly and selectively reduced in the hippocampus and temporal cortex of AD patients. A clarification of the role played by decreased neprilysin activity in the pathogenesis of AD has opened up the possibility of neprilysin up-regulation as a novel preventive and therapeutic approach to AD. Since the expression level and activity of neprilysin are likely to be regulated by neuropeptides and their receptors, non-peptidic agonists for these receptors might be effective agents to maintain a sufficient level of Aβ catabolism in brains of the elderly.In addition to Aβ deposits, intraneuronal fibrillary lesions, such as neurofibrillary tangles, are also a pathological hallmark of AD, and the extent of the resultant cytoskeletal disruptions may be dependent upon the activity levels of proteolytic enzymes. Among proteases for which major cytoskeletal components are good substrates, calpains were shown to participate in excitotoxic stress-induced neuritic degeneration in our recent analysis using genetically engineered mice. Moreover, we have found that this pathology can be reduced by controlling the activity of an endogenous calpain inhibitor known as calpastatin, providing a possible approach for the treatment of diverse neurodegenerative disorders, including AD.
Keywords: Alzheimer's disease; Amyloid β peptide; Senile plaque; Neprilysin; Tau; Neurofibrillary tangle; Calpain; Caspase
Involvement of placental peptidases associated with renin–angiotensin systems in preeclampsia
by Atsuo Itakura; Shigehiko Mizutani (pp. 68-72).
Preeclampsia is characterized by pregnancy-induced hypertension accompanied with protein urea and generalized edema. Preeclampsia develops during the second half of pregnancy and resolves postpartum promptly, implicating the placenta as a primary cause in the disorder. Normal pregnancy is associated with reductions in arterial pressure and attenuated pressor response to exogenous infused angiotensin II (ANG II). In contrast, women with preeclampsia show the similar sensitivity to the pressor effect of ANG II as do non-pregnant women. To elucidate the involvement of placental peptidases associated with renin–angiotensin systems, we determined the localization of angiotensin-converting enzyme (ACE) and aminopeptidase A (AP-A), ANG II degrading enzyme, in the placenta and compared the expression of mRNA and protein in uncomplicated and preeclamptic placenta. In addition, AP-A expression in trophoblastic cells treated with ANG II and ACE expression in HUVECs under hypoxic condition were analyzed, respectively. The expression of both peptidases in the preeclamptic placenta was significantly higher than those from uncomplicated. ACE was primarily localized to venous endothelial cells of stem villous whereas AP-A expression was recognized in the trophoblast and pericytes of fetal arterioles and venules within stem villous. Hypoxia induced ACE expression in HUVECs while both hypoxia and ANG II evoked AP-A expression in trophoblast. These results suggested that hypoxic condition in preeclampsia induces ACE activation in feto-placental unit to maintain the fetal hemodynamics and placental AP-A plays a role as a component of the barrier of ANG II between mother and fetus.
Keywords: Angiotensin-converting enzyme; Aminopeptidase A; Preeclampsia; Placenta; Peptidase
A novel scheme of dystrophin disruption for the progression of advanced heart failure
by Tomie Kawada; Fujiko Masui; Asaki Tezuka; Takashi Ebisawa; Hiroyuki Kumagai; Mikio Nakazawa; Teruhiko Toyo-oka (pp. 73-81).
The precise mechanism of the progression of advanced heart failure is unknown. We assessed a new scheme in two heart failure models: (I) congenital dilated cardiomyopathy (DCM) in TO-2 strain hamsters lacking δ-sarcoglycan (SG) gene and (II) administration of a high-dose of isoproterenol, as an acute heart failure in normal rats. In TO-2 hamsters, we followed the time course of the histological, physiological and metabolic the progressions of heart failure to the end stage. Dystrophin localization detected by immunostaining age-dependently to the myoplasm and the in situ sarcolemma fragility evaluated by Evans blue entry was increased in the same cardiomyocytes. Western blotting revealed a limited cleavage of the dystrophin protein at the rod domain, strongly suggesting a contribution of endogenous protease(s). We found a remarkable up-regulation of the amount of calpain-1 and -2, and no change of their counterpart, calpastatin. After supplementing TO-2 hearts with the normal δ-SG gene in vivo, these pathological alterations and the animals' survival improved. Furthermore, dystrophin but not δ-SG was disrupted by a high dose of isoproterenol, translocated from the sarcolemma to the myoplasm and fragmented. These results of heart failure, irrespective of the hereditary or acquired origin, indicate a vicious cycle formed by the increased sarcolemma permeability, preferential activation of calpain over calpastatin, and translocation and cleavage of dystrophin would commonly lead to advanced heart failure.
Keywords: Abbreviations; CM; cardiomyopathy; DCM; dilated cardiomyopathy; δ-SG; δ-sarcoglycan; DAP; dystrophin-associated proteins; HCM; hypertrophic cardiomyopathy; LVP; left ventricular pressure; rAAV; recombinant adeno-associated virusDystrophin; δ-Sarcoglycan (SG); Gene therapy; Heart failure; Proteolysis; Calpain
Serine proteases and cardiac function
by Qingyu Wu; Hai-Chien Kuo; Gary Gang Deng (pp. 82-94).
The serine proteases of the trypsin superfamily are versatile enzymes involved in a variety of biological processes. In the cardiovascular system, the importance of these enzymes in blood coagulation, platelet activation, fibrinolysis, and thrombosis has been well established. Recent studies have shown that trypin-like serine proteases are also important in maintaining cardiac function and contribute to heart-related disease processes. In this review, we describe the biological function of corin, tissue kallikrein, chymase and urokinase and discuss their roles in cardiovascular diseases such as hypertension, cardiac hypertrophy, heart failure, and aneurysm.
Keywords: Corin; Tissue kallikrein; Chymase; Urokinase; Cardiac function
Functions for proteinases in the ovulatory process
by Junji Ohnishi; Eriko Ohnishi; Hiroshi Shibuya; Takayuki Takahashi (pp. 95-109).
The ovary is a unique and dynamic organ in respect to rapid and extensive degrees of tissue development and remodeling that are periodically repeated in the female reproductive activity. Ovulation is a directed and sequential process accompanied by broad-spectrum proteolysis and culminates in the follicular rupture to release the matured oocyte. This review will focus on the potential roles of six representative proteinases that are involved in various aspects of ovulatory processes: matrix metalloproteinases (MMPs), plasminogen activator (PA)/plasmin, a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS), cathepsin-L, pregnancy-associated plasma protein-A (PAPP-A), and bone morphogenetic protein 1/mammalian Tolloid (BMP-1/mTld). Based on the studies of expression and function, these selected proteinases provide and share diverse functions ranging from cleaving components of the extracellular matrix (ECM) to modulating non-ECM molecules, such as various growth factors and their binding proteins. Consistently, the genetic deletion of each individual gene in mice shows their functional overlap in the reproductive activity.
Keywords: Abbreviations; PA; plasminogen activator; uPA; urokinase-type PA; tPA; tissue-type PA; MMP; matrix metalloproteinase; ADAMTS; a disintegrin and metalloproteinase with thrombospondine motifs; PAPP-A; pregnancy-associated plasma protein-AOvulation; MMP; PA/plasmin; ADAMTS; Cathepsin-L; BMP-1/mTld
ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk
by Shigeki Higashiyama; Daisuke Nanba (pp. 110-117).
All ligands of the epidermal growth factor receptor (EGFR) which has important roles in development and disease, are shed from the plasma membrane by metalloproteases. The ectodomain shedding of EGFR ligands has emerged as a critical component in the functional activation of EGFR in the interreceptor cross-talk. Identification of the sheddases for EGFR ligands using mouse embryonic cells lacking candidate sheddases (a disintegrin and metalloprotease; ADAM) has revealed that ADAM10, -12 and -17 are the sheddases of the EGFR ligands in response to various shedding stimulants such as GPCR agonists, growth factors, cytokines, osmotic stress, wounding and phorbol ester. Among the EGFR ligands, heparin-binding EGF-like growth factor (HB-EGF) is a representative ligand to understand the pathophysiological roles of the ectodomain shedding in wound healing, cardiac diseases, etc. Here we focus on the ectodomain shedding of HB-EGF by ADAMs, which is not only a key event of receptor cross-talk but also a novel intercellular signaling by the carboxy-terminal fragment (CTF signal).
Keywords: ADAM; EGFR ligand; HB-EGF; Ectodomain shedding; EGFR transactivation; Carboxy-terminal fragment signal (CTF signal)
|
|